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➢ Example: 
➢ New York Beach Road parking lot, 
➢ State Route 87 in Arizona, 
➢ low-volume roads in Minnesota, 
➢ Maine Mall road

➢ Over the years these structures
     showed better performance 

➢Best practices for stormwater management on parking lots,
walkways, shoulder lanes, and low volume roads across the
world

➢Design is focused on the hydrological aspects

New York beach road



4

Storm water 
management 
best practice

Functionality

Hydrological 
design

High traffic 
volume 

roadways

Structural 
capacity

Structural 
design

Need a 
design 

framework
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➢ PAPS has been used extensively for low volume roads  

➢ Need to evaluate the PAPS technology on roadways with 

high traffic.  

➢ Need to develop a design framework for porous asphalt 

pavement for high traffic volume roadways using both, 

AASHTO 93 and AASHTOWare ME.
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➢ Develop a framework for the design of porous asphalt 
pavement structure for high traffic volume roadways 
(>10M ESALS) for using in AASHTO 93 design 
method and AASHTOWare ME method.

➢ Validate the framework by designing a long-lasting 
porous asphalt pavement structure for a high traffic 
volume road in New Jersey.
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Structural design framework for porous asphalt pavement

Hydrological design

AASHTO 93 design

AASHTOWare ME design

Development of 
design framework

Initial trial design thickness

𝑀𝑅, 𝑆0, 𝑊18, 𝑅, ∆𝑃𝑆𝐼

Traffic data
Climate data

Pavement structure
Calibration coefficients

Validation of 
developed framework

C
as

e 
st

ud
y 

– 
N

ew
 J

er
se

y 
R

oa
dw

ay



8

➢ Provide sufficient storage capacity for the gradual release of 

collected storm water into the stormwater system or natural soil

➢ Infiltration rate, capacity of the subgrade soil and the volume of 

anticipated stormwater runoff are the design elements

➢ Minimum thickness (combined thickness of all asphalt layers) of 6-

inch is recommended for PA layer

➢ Stone recharge bed thickness  12 to 36-inch
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➢ Hydrological design based on NJDEP BMP Manual 2021

➢ Porous asphalt layer properties are from the laboratory test at 

Rowan CREATES 

➢ Traffic data, climatic data, and subgrade soil properties from 

Rt.34 details

➢ Design life 50 years, new flexible pavement

➢ Design ESAL= 13,140,618 (13 𝑀𝑖𝑙𝑙𝑖𝑜𝑛)
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Franklin 
Township, NJ
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Air voids (AASHTO T209& AASHTO 
T331)

TSR (AASHTO T283)
Durability (AASHTO TP108)

Drain down test (ASTM D6390)
Permeability (FM 5-565)

Binder 𝐺∗  and 𝛿 (AASHTO T 315)
Mixture 𝐸∗  (AASHTO T378)
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BelowAbove

PA 
Mixtures

Binder 

PG

Air voids 

(%)
AC (%)

NMAS 
(mm)

Additive Filler

MOGFC12.5VA20.38%

76–22
20.38 5.8 12.5

Cellulose 
fiber

Mineral 
filler

MOGFC12.5VA26% 26.00 6.2 12.5
MOGFC9.5VA19.7% 19.70 5.7 09.5

Tensile strength ratio DurabilityGradation curve

No drain 
down 

(AASHTO T305/
ASTM D6390)
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PA Mixtures Avg. Permeability (m/day)
MOGFC12.5VA20.38% 127.87 (419.52 ft/day)

MOGFC12.5VA26% 121.66 (399.15 ft/day)
MOGFC9.5VA19.7% 128.12 (420.34 ft/day)

Angular frequency 10rad/sec
T (C) 𝐺∗ (Pa) 𝛿 (degree)
131 25897 62.3
158 5178 62.9
185 1226 68.1

Rheological properties of PG 76-22 BinderFalling head Permeability test results

Dynamic Modulus Master Curve for the PA Mixtures

MOGFC12.5VA20.38% MOGFC 12.5VA26% MOGFC9.5VA19.7%
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Dense-graded structure

Packing concept Skeleton concept

Open-graded structure

• Some voids
• Densest stone packing
• Friction between stones dominant

• High voids
• Open graded stone skeleton
• Lateral confinement dominant
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➢Unlike dense-graded mixtures, 

Open-graded mixture E* values 

are influenced by confinement 

(Zeiada et al. 2011)

➢Significant increase in E* values 

with confinement especially at 

higher temperature



19



20

𝑎𝑖 from laboratory 𝐸∗ values of three different MOGFC/PA mixtures 
Unconfined Confined

PA Mixtures 𝐸∗ (psi) at 70℉, 10 Hz 𝑎𝑖 𝐸∗ (psi) at 70℉, 10 Hz 𝑎𝑖

MOGFC12.5VA20.38% 629754 0.39 909071 0.43
MOGFC12.5VA26.00% 321694 0.31 489801 0.36
OGFC9.5VA19.70% 380047 0.33 569220 0.37

𝑀𝑅(𝑝𝑠𝑖) = 30,000 ×
𝑎𝑖

0.14

3

Source: AASHTO 93 design guide

Backcalculated layer coefficients
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Project Name and Location:
New Jersey Route 34, MP 13.45 – 21.00

Input Parameter Symbol Value Reference

Initial Serviceability 𝑝0 4.2 II-10 & NJ serviceability loss
Terminal Serviceability 𝑝𝑡 2.5 II-10 & NJ serviceability loss

Reliability Level 𝑅 90% I-53 to I-64 or II-9 & NJ 
Reliability

Standard Normal Deviate 𝑍𝑅 -1.282

Overall Standard Deviation 𝑆0 0.45 I-62 or II-9 & NJ Standard 
Deviation

Performance Period 50 years II-5 to II-8 & NJ Performance 
Period

General Information
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Input Parameter Symbol Reference

Initial AADT (AADTi) 8872 vpd 1-way

Based on data supplied by the 
NJDOT Project Manager

Final AADT (AADTf) 12,390 vpd 1-way
𝐶𝑎𝑟% 93.00
𝐶𝑎𝑟𝑓 0.010
𝐿𝑇% 5.00
𝐿𝑇𝑓 0.453

𝐻𝑇% 2.00
𝐻𝑇𝑓 1.789
DD% 100 II-7 & NJ Directional Distribution
𝐷𝐿% 100 II-7, 8 & NJ Lane Distribution
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𝑆𝑁𝐶 > 𝑆𝑁𝐷(4.57), Acceptable design𝑚𝑖 = 1.00

B Backcalculated value from 𝐸∗ at 70℉, 10 Hz

Design structure 

𝑀𝑅(𝑝𝑠𝑖) = 30,000 ×
𝑎𝑖

0.14

3

Source: AASHTO 93 design guide

Layer Material 𝑎𝑖 𝐷𝑖 (in) 𝑆𝑁𝐶

1 Porous asphalt 
(MOGFC)

0.31B 6 1.86

2 ASDC 0.23 13 2.99
3A Stone reservoir 18

Total 37 4.85

Subgrade soil 𝑀𝑅 = 4186 𝑝𝑠𝑖 (50% of 8372psi; A-5 Soil)

Composite subgrade 𝑀𝑅 = 10734 𝑝𝑠𝑖 

A Not a structural layer

(NAPA IS 140)

(NAPA IS 140, Hall and Schwartz 2018)

Design ESAL=13,140,618

𝑎𝑖 PA thickness
0.31 6-in
0.43 4.5-in

Sensitivity of  thickness to 𝑎𝑖 
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➢ Climate data - retrieved 
from the nearest weather 
station (MERRA-2 station 
ID 14476, Edison, NJ

➢ Traffic data- 

Age 

(year)

Heavy Trucks 

(cumulative)

2027 (initial) 1,650
2052  (25 years) 8,510,560
2077 (50 years) 19,424,800

Porous asphalt layer (MOGFC-1, MOGFC-2, OGFC mixtures) 

Mixture volumetrics Level 1 

Mechanical 
properties 

Dynamic modulus Level 1 
Binder properties Level 1 
Creep Compliance Level 3 
Indirect Tensile Strength Level 3 
Unit weight (120 lb/ft3) Level 3 

AC thermal properties Level 3 
Asphalt Stabilized Drainage Course (ASDC) 

Unbound base Layer Properties Level 3 
 Resilient Modulus, (135,000 psi) 

Gradation and other Engineering Properties 
Non-Stabilized Permeable Aggregate Base Layer 

Unbound base Layer Properties 
Level 3 Resilient Modulus, (20,000 psi) 

Gradation and other Engineering Properties 

Uncompacted Subgrade 
Unbound base Layer Properties 

Level 3 Resilient Modulus, (10743 psi) 
Gradation and other Engineering Properties 

 1 

➢ Default calibration factors
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Distress prediction summary

Layer Type Material Type Thickness (in)

Flexible Porous asphalt 6
Non-Stabilized ASDC 13
Non-Stabilized Stone reservoir 18
Subgrade A-5 Semi-infinite

Design structure

Distress Type

Distress @ 
Specified Reliability Criterion 

Satisfied?

Distress @ 
Specified Reliability Criterion 

Satisfied?Target Predicted Predicted
Unconfined Confined

Terminal IRI (in/mile) 172.00 309.00 Fail 299.40 Fail
Permanent deformation – total (in) 1.00 0.75 Pass 0.54 Pass
AC bottom-up fatigue cracking (%) 25.00 7.14 Pass 6.41 Pass
AC thermal cracking (ft/mile) 1000.00 2892.45 Fail 2863.51 Fail
AC top-down fatigue cracking (%) 25.00 60.32 Fail 56.42 Fail
Permanent deformation - AC only (in) 0.50 0.34 Pass 0.14 Pass
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➢ AASHTOWare is developed for dense-graded pavements

➢ Lack of distress prediction models specific to PA mixtures

➢ Min. 16% air voids > 10% (in software)

➢ Aggregate gradation parameter (𝛽) > 0.55

➢Lack of local calibration factors for NJ specific materials 

Top-down cracking model

Fatigue cracking model
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➢ Limitations in the upper and lower limits of air voids and other mixture 
volumetrics will directly affect the AC rutting prediction model in the AASHTOWare 
ME software Version 3.0

➢ Aggregate gradation parameter represents the shape parameter of the power 
law approximation of the gradation curve. 

➢ Predicted AC top-down cracking is directly influenced by aggregate gradation 
parameter. 

➢ Aggregate gradation will influence the 𝐸∗ and rutting prediction

➢ Default calibration coefficients are for hot mix asphalt mixtures with a neat 
binder. 
➢ This will influence all the predicted distress values when used with open-graded 

porous asphalt mixtures. 
➢ Need to develop local calibration coefficients
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• Hydrological design thickness and layer coefficient from 
literature will serve as the initial trial design in the AASHTO 93 
method. 

• Final structure from the AASHTO 93 method needs to be 
analyzed in AASHTOWare ME to ensure the performance of 
PAPS for a longer design life with high traffic volume.

• Framework validated using a case study in New Jersey 
resulted in a structure with 6-inch porous asphalt layer, 13-
inch ASDC and 18-inch stone reservoir layer to carry 13 
million ESALs over 50 years. 
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MOGFC-1 MOGFC-2 OGFC

Average unconfined 𝐸∗  
(at 70℉ (21.1℃) ) 

4,342 MPa 
(629,754 psi)

2,218 MPa, 
(321,694 psi)

2,620 MPa 
(380,047 psi) 

Layer coefficient 0.39 0.31 0.33
Average confined 𝐸∗  
(at Confinement level-138 kPa (20 psi)

6268 MPa
(909,071 psi)

3377 MPa
(489,801 psi)

3925 MPa
(569,220 psi)

Layer coefficient 0.43 0.36 0.37
Increase in 𝐸∗  with confinement 44% 52% 50%

Layer coefficient (𝑎𝑖) PA layer thickness
0.31 6-in
0.43 4.5-in

Variation in 𝐸∗  and layer coefficient with confinement

Sensitivity of thickness to layer coefficient
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• Analysis of AASHTO 93 design in AASHTOWare ME revealed 
the limitations in analyzing PAPS in the current version of the 
AASHTOWare ME

• AASHTOWare ME software predicted rut depth of 0.75-inch, 
and 0.54-inch for the PA pavement structures with OGFC 
mixtures. 
• These values were less than New Jersey rut criteria of 

maximum 1-inch. 
• This demonstrates that the design has the potential to 

withstand a 50-year traffic load of 13 million ESALs
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• Framework proposed in this study, include:

• Step 1: Hydrological design, 

• Step 2: Design based on AASHTO 93, hen 

• Steps 3: Revaluate design using Level 1 AASHTO Pavement ME to design 
durable porous asphalt pavement for heavy traffic volume (>10M ESALs). 

• Collect the Level 1 input using the confined dynamic modulus 
test 

• Equation provided in this study can be used to calculate the 
confined E* if the confined E* test cannot be performed.
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• Level 1 inputs are required for the analysis and distress 

• Prediction models need to be calibrated for conditions specific to the 
proposed location

• AASHTOWare ME predicted rut depth shows that the 
framework will result in a PAP structure that can withstand 
heavy traffic (ESALS=15M) 

• With some modifications in the current version (Version 3.0), 
AASHTOWare ME analysis will provide a more accurate and 
economical thickness design for the open-graded porous 
asphalt pavement 
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Construction of Full-scale Test Sections of 
Porous Asphalt Pavement
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0.40

0.22

>12-in thickness, 
Hence considered 

as composite 
subgrade

13 million ESALS 

(50 years design life)

2-in PA

10-in ASDC

12-in Stone 
reservoir bed

Uncompacted 
subgrade

6-in PA

13-in ASDC

18-in Stone 
reservoir bed

Uncompacted 
subgrade

0.40

0.22

0.14

1 million ESALS 

(20 years design life)

Test strip 1

Test strip 2

ESAL Axle load 
(kN/kip)

HVS 
Passes

1,000,000
80kN/18kip

62,500
13,000,000 812,500

HVS loading

Section from validated 

design framework 

Section from an 

existing shoulder 

lane in NJ
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Critical 
location

Sum of Damage Ratio Tensile strain Compressive strain Max damage ratio

Unconfined Confined Unconfined Confined Unconfined Confined Unconfined Confined

At Bottom 
of Layer  1 0.93 1.03 111 𝜇 103 𝜇

2.32 1.59At Bottom 
of Layer  2 0.49 0.39 120 𝜇 111 𝜇

At Top of 
Layer  3 2.32 1.59 566 𝜇 325 𝜇 

(Analysis is done for 13 million ESALs (13,140,618 ESALs)6 in, 13 in, 18 in- section from AASHTO 93 Phase I

Critical 
location

Sum of Damage Ratio Tensile strain Compressive strain Max damage ratio

Unconfined Confined Unconfined Confined Unconfined Confined Unconfined Confined

At Bottom of 
Layer  1 0.0013 0.0060 16 𝜇 48 𝜇

2.4850 2.0610

At Bottom of 
Layer  2 0.4846 0.4429 261 𝜇 254 𝜇

At Top of 
Layer  3 2.4850 2.0610 586 𝜇 562 𝜇

At Top of 
Layer  4 1.2610 1.0110 504 𝜇 479 𝜇

2 in, 10 in, 12 in - section from existing shoulder lane in NJ (Analysis is done for 1 million ESALs)

2-in PA

10-in ASDC

12-in Stone 
reservoir bed

Uncompacted 
subgrade

6-in PA

13-in ASDC

18-in Stone 
reservoir bed

Uncompacted 
subgrade



Layout of HVS facility with porous asphalt pavement 
sections
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o Testing Condition: Dry

▪ First half of HVS passes (31,250 passes- Test strip I& 406,250 passes-Test Strip II) 
▪ Sensor data (1,613 data points per pass from each sensor) will be used to calibrate fatigue 

and rutting models
▪ If the section fails, HVS testing will be terminated. (Failure criteriaRutting-1 in, fatigue 25%)

If the section survives dry testing

o Testing Condition: Partially Saturated  

▪ Reservoir layer will be filled with water up to 50% of its full capacity 
▪ Apply the remaining passes (31,250 passes- Test strip I& 406,250 passes-Test Strip II) 

If the section survives partially saturated testing

o Testing Condition: Fully Saturated  

▪ Reservoir layer will be filled with water up to 100% of its full capacity 
▪ Start applying HVS passes (62,500 passes-Test strip I& 812,500 passes-Test Strip II) 
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▪ Wide-base tire, 80 kN

▪ Bi-directional 

▪ Four-inch Wander

▪ Average air temperature in NJ 

around the pavement section

▪ High temperature test for rutting 

NJ Air Temperature trend

Laser profilometer

▪ Every day, during the application of 

HVS loading, at three different locations 

(spaced 6 ft away from the middle of a 

section). 
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➢Validated design approach for PA pavement for high-traffic volume

➢Performance under high traffic volume for 50 years will be available in 

as less as 3 months from HVS loading

➢MEPDG calibration coefficients 

➢New rutting and fatigue prediction models 

➢Periodic report on the performance history

➢Systematic record of the construction problems/challenges 

➢Porous asphalt layer coefficient as an input in the AASHTO 93 design
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