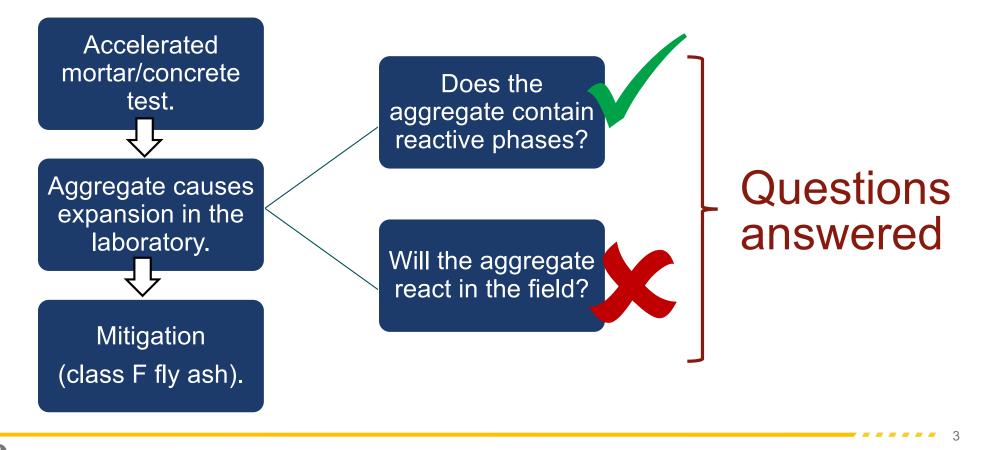

U.S. Department of Transportation Federal Highway Administration

Turner-Fairbank Highway Research Center

HOW TO AVOID ASR GEL IN YOUR CONCRETE

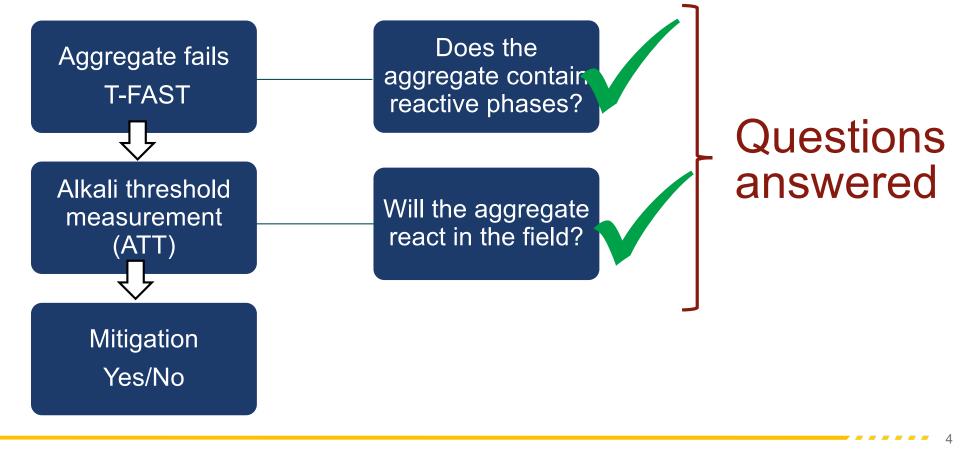
Chandni Balachandran & Terry Arnold

NESMEA General Meeting November 1-2, 2022

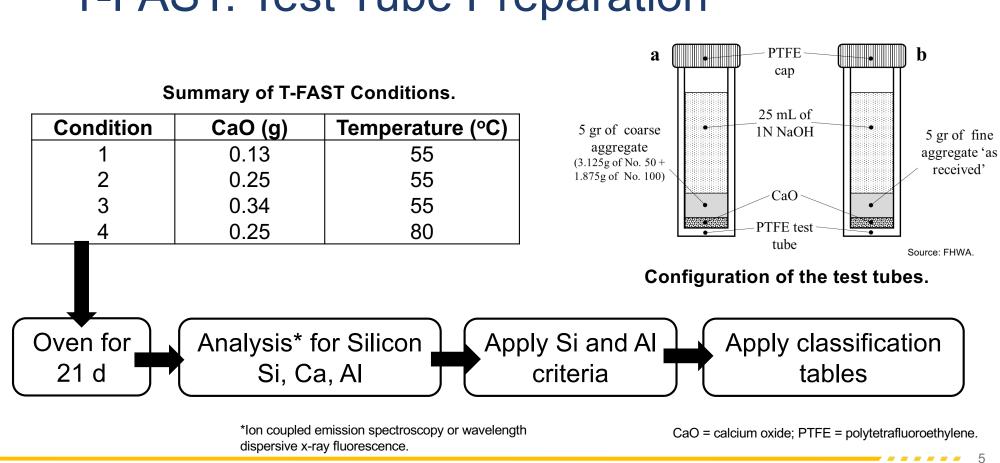


Source FHWA.

Outline


- Testing philosophy of accelerated tests and TFHRC ASR tools
- Brief recap of T-FAST
- T-FAST results:
 - ▷ General classification
 - ▷ Correlation with AMBT, CPT and MCPT
- Brief recap of ATT
- ATT results:
- Practical applications of T-FAST and ATT
 - Alkali loading and alkali threshold
 - > Performance approach example
 - Prescriptive approach example
- Conclusions

Testing Philosophy of Accelerated ASR Tests



U.S. Department of Transportation Federal Highway Administration

Testing Philosophy of TFHRC ASR Tests

U.S. Department of Transportation Federal Highway Administration

T-FAST: Test Tube Preparation

U.S. Department of Transportation Federal Highway Administration

T-FAST Si and AI Criteria

1. If [Si] measured in Condition 4 (80 °C) is \leq 1 mM \longrightarrow

High-Al Aggregates

If [Si] measured in Condition 4 (80 °C) is > 1 mM and [Al] measured in Condition 2 (55 °C) is > 0.2 mM

Calculate RI for all the conditions and follow first classification table.

$$RI = \frac{[Si]}{[Ca] + [Al]}$$

Nonreactive.

Low-Al Aggregates

If [Si] measured in Condition 4 (80 °C) is > 1 mM and [Al] measured in Condition 2 (55 °C) is \leq 0.2 mM

 \rightarrow

Use [Si] in Condition 4 and follow second classification table.

Turner-Fairbank Highway Research Center

T-FAST: First Classification Table (High-Al Aggregates)

Classification for Coarse Aggregates.

Classification for Fine Aggregates.

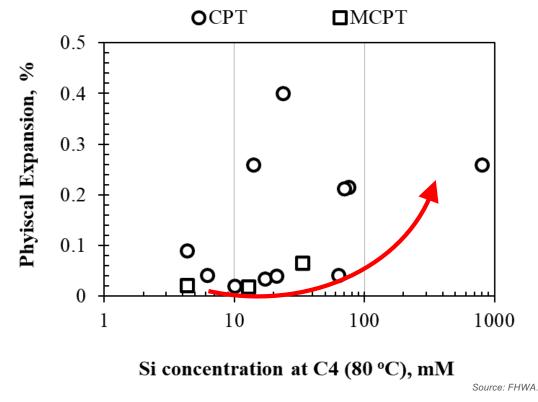
7

Condition 1 Condition 2 Condition 3	Condition 4	Description of Aggregate Reactivity	Condition 1 Condition 2 Condition 3	Condition 4
RI ≤ 0.45 for three cases	RI ≤ 2	Nonreactive	RI ≤ 1 for three cases	RI ≤ 10
0.45 < RI ≤ 2 for one case	2 < RI ≤ 100	Slow reactive	1 < RI ≤ 10 for one case	10 < RI ≤ 150
0.45 < RI ≤ 2 for at least two cases	2 < RI ≤ 100	Moderately reactive	$1 < RI \le 10$ for at least two cases	10 < RI ≤ 150
RI > 2 for at least one case $100 < RI \le 1,000$		Highly reactive	RI > 10 for at least one case	150 < RI ≤ 1,000
RI > 2 for at least one case RI > 1000		Very highly reactive	RI > 10 for at least one case	RI > 1,000

Source: FHWA.

T-FAST: Second Classification Table (Low-Al Aggregates)

[Si] in Condition 4	Description of Aggregate Reactivity
1 < RI ≤ 50	Slow reactive
50 < RI ≤ 100	Moderately reactive
100 < RI ≤ 1,000	Highly reactive
RI > 1000	Very highly reactive

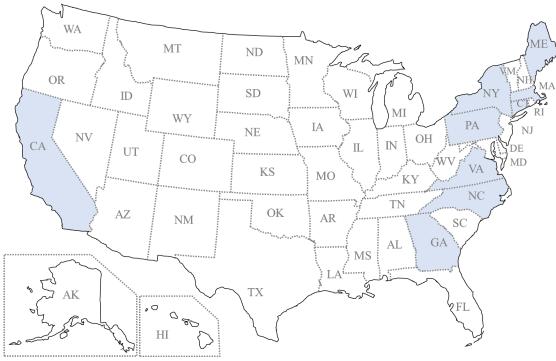

Source: FHWA.

T-FAST: Classification Criteria (Low-Al Aggregates)

- Mainly dolomites, dolomitic limestones, dolostones and certain limestones.
- The physical expansion correlates with the amount of SiO₂ in the aggregate.*

* Grattan-Bellew, P. E., Mitchell, L. D., Margeson, J., & Min, D. (2010). Is alkali–carbonate reaction just a variant of alkali–silica reaction ACR= ASR?. *Cement and Concrete Research*, *40*(4), 556-562.

Correlation between physical expansion and [Si] at C4 (80 °C).



9

U.S. Department of Transportation Federal Highway Administration

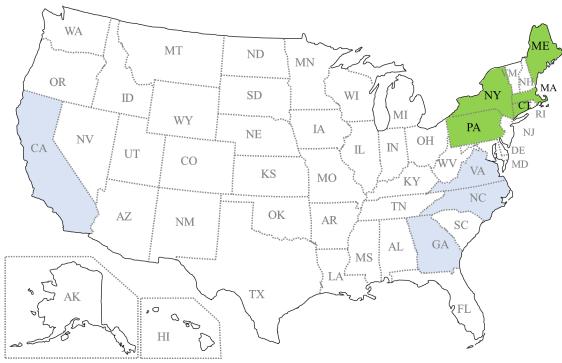
Turner-Fairbank Highway Research Center

T-FAST: Sample Population

▷ 245 aggregates analyzed with T-FAST.

- ▷ From 9 different States.
- ▷ Wide range of mineralogies.

Source: FHWA.


Distribution of the aggregates analyzed under T-FAST

2 U.S. Department of Transportation Federal Highway Administration

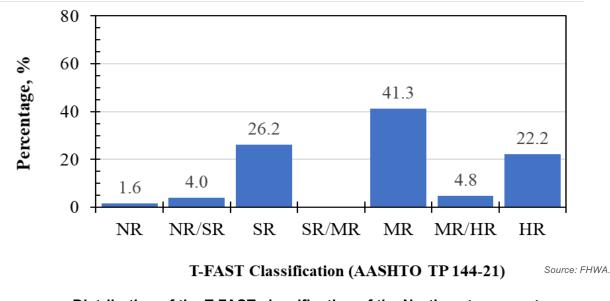
Turner-Fairbank Highway Research Center

- - 10

T-FAST: Sample Population (Northeast Region)

185 aggregates analyzed with T-FAST.

- From 5 different States (MA, NY, PA, CT, ME).
- Significant proportion of carbonate aggregates (NY and PA).

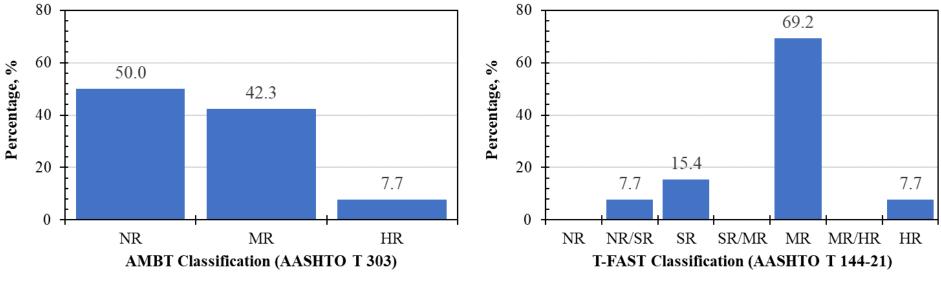

11

Source: FHWA.

Distribution of the aggregates analyzed under T-FAST

U.S. Department of Transportation Federal Highway Administration

T-FAST Results under Current Mitigation Specifications



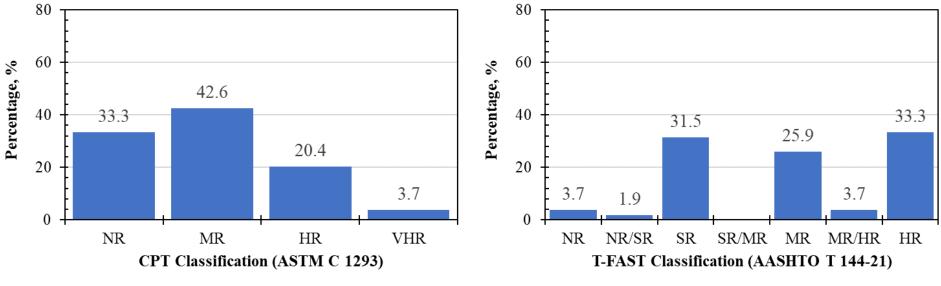
Distribution of the T-FAST classification of the Northeast aggregates

---- 12

- ▷ Few non-reactive aggregates were detected by TFAST.
- \triangleright 67.5% of the aggregates were classified as SR or MR.

T-FAST Results: Correlation with AMBT

Comparison of ASR classification reported by AMBT and TFAST.


Source: FHWA.

- - - 13

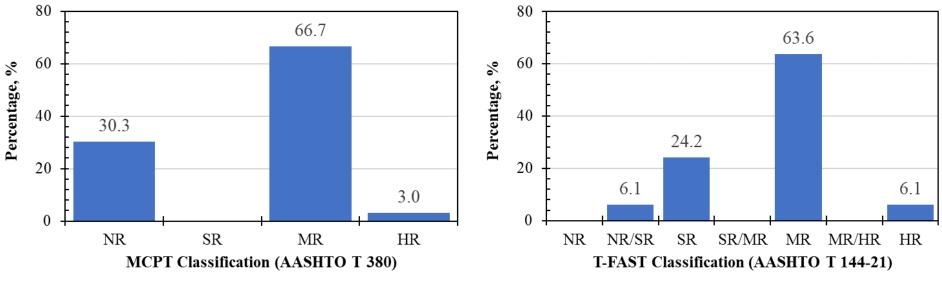
► The AMBT classified 50% of the aggregates as NR, while the T-FAST reported none.

AMBT = accelerated mortar bar test; HR = highly reactive; MR = moderately reactive; NR = nonreactive; SR = slow reactive.

U.S. Department of Transportation Federal Highway Administration

T-FAST Results: Correlation with CPT

Comparison of ASR classification reported by CPT and TFAST.


Source: FHWA.

_ _ _ _ _ 14

▶ The CPT classified 33.3% of the aggregates as NR, while the T-FAST only reported 3.7%.

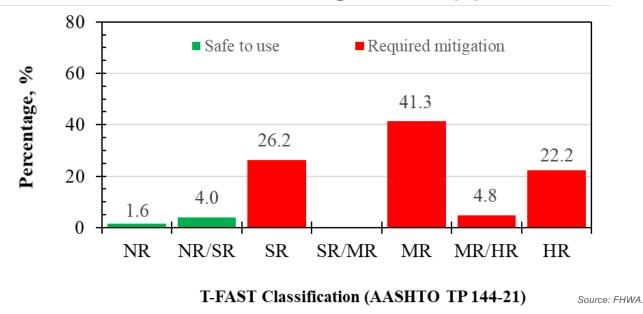
CPT = concrete prism test; HR = highly reactive; MR = moderately reactive; NR = nonreactive; SR = slow reactive; VHR = very highly reactive.

U.S. Department of Transportation Federal Highway Administration

T-FAST Results: Correlation with MCPT

Comparison of ASR classification reported by MCPT and TFAST.

Source: FHWA.


- - - 15

► The MCPT classified 30.3% of the aggregates as NR, while the T-FAST reported none.

MCPT = miniature concrete prism test; HR = highly reactive; MR = moderately reactive; NR = nonreactive; SR = slow reactive.

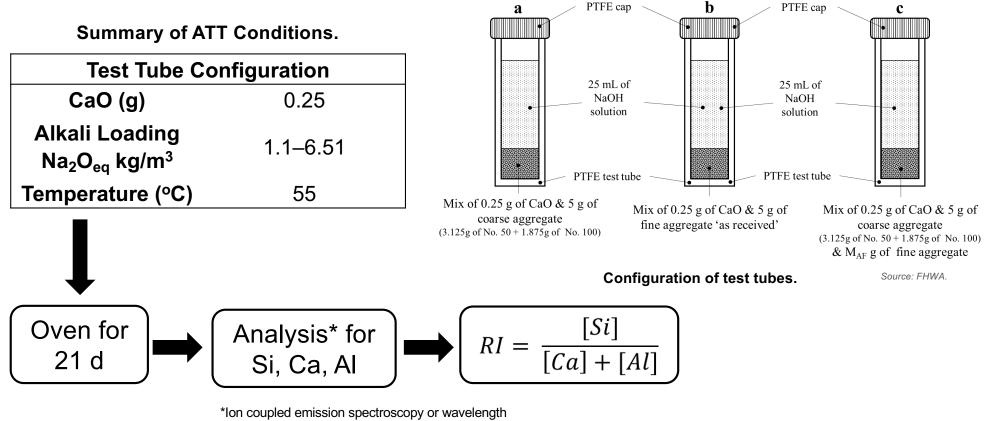
U.S. Department of Transportation Federal Highway Administration

T-FAST Results: Current mitigation approach

Distribution of the T-FAST classification of the Northeast aggregates

▷ 94% aggregates would require mitigation.

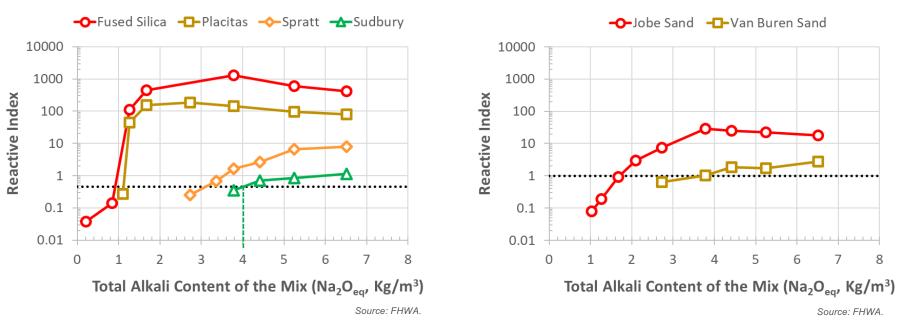
Alkali Threshold Test (ATT)


- The minimum amount of alkali needed to trigger the reaction.
- Alkali threshold helps predict whether an aggregate would react under specific field conditions.
- ATT is a fast and reliable method to measure the alkali threshold.

Source: FHWA.

U.S. Department of Transportation Federal Highway Administration

ATT: Test Tube Preparation


- - - 18

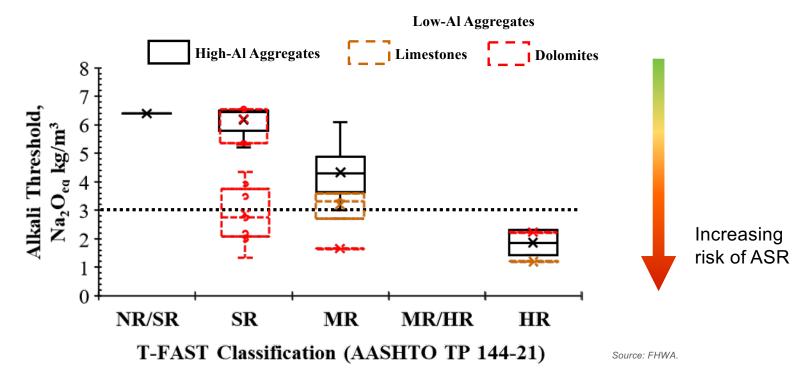
dispersive x-ray fluorescence.

2 U.S. Department of Transportation Federal Highway Administration

Turner-Fairbank Highway Research Center

ATT: Interpretation of the Results

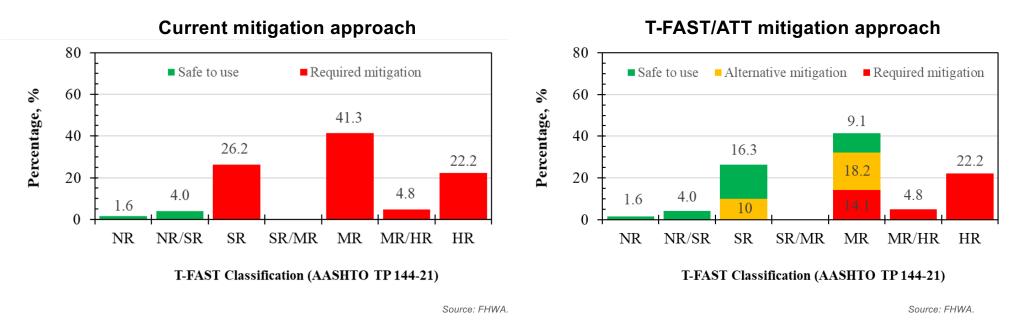
Coarse Aggregates


Fine Aggregates

---- 19

Effect of alkali content on the RI.

ATT: Interpretation of the Results


_ _ _ _ _ _ 20

Correlation between T-FAST classification and alkali threshold of the high and low-Al aggregates.

Turner-Fairbank Highway Research Center

T-FAST Results: Mitigation Approach

- Current mitigation approach: 94% aggregates would require mitigation.
- ► T-FAST/ATT mitigation approach: 41.1% aggregates would require mitigation.

Alkali Loading of Concrete: Total alkali content in the concrete. Depends on:

- amount of cement
- alkali content of cement

• amount and alkali content of other constituents (e.g., aggregates and supplementary cementitious materials). The alkali contribution of these constituents is more difficult to quantify.

_ _ _ _ _ _ _ _ 22

Concrete alkali loading kg/m³ Na₂O_{eq} = Cement content kg/m³ x Cement alkalis wt. % Na₂O_{eq} 100

Na⁺ K+ Alkalis Water Source: FHWA **ASR Gel**

Amorphous Silica

AL > AT of the aggregates

2 U.S. Department of Transportation Federal Highway Administration

Turner-Fairbank Highway Research Center

Amorphous Silica AL < AT of the aggregates √la+ <u>ıka</u> Water Source: FHWA **ASR Gel**

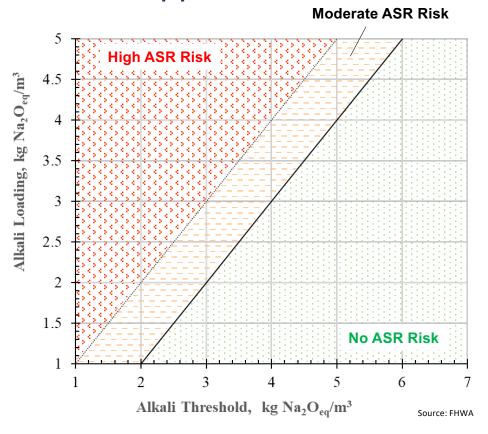
Turner-Fairbank Highway Research Center

Performance Approach Example

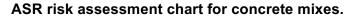
Requirement: Evaluate the AT of the combination of coarse and fine aggregate as in the mix design.

<u>Pros</u>: Provides flexibility to safely allow the use of high alkali cements and/or off-spec SCMs. Possibility to control quality of concrete mixes in iconic construction projects (e.g., Bridges, Tunnels, etc.).

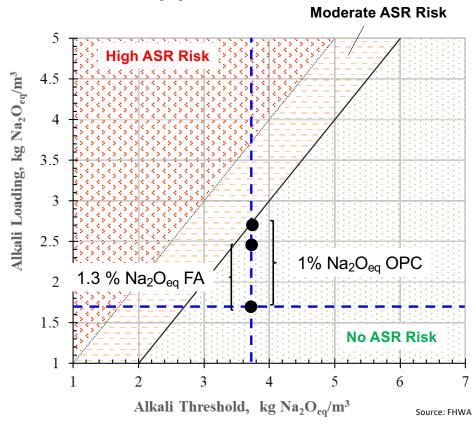
<u>Cons</u>: Labor intense depending on the number of concrete mixes authorized per year.


- - - - - - 25

Turner-Fairbank I Highway Research Cer


Performance Approach Example

_ _ _ _ _ _ 26


<u>No ASR Risk region:</u> High alkali cements and/or off-spec SCMs permissible.

Moderate and High ASR Risk regions: Follow mitigation methods recommended as per specifications.

U.S. Department of Transportation Federal Highway Administration

Performance Approach Example

Type of Concrete	Pavement	
Binder content	525 lb/yd ³ (311 kg/m ³)	
SCM Replacement	25	
level, %		
Aggregates AT	3.7 kg/m ³	

Content, kg/m ³		% Na ₂ O _{eq}	AL, kg/m³
OPC	234	0.6	1.4
Fly Ash	78	1.3	1

Concrete AL

2.4 kg/m³

ASR risk assessment chart for concrete mixes.

U.S. Department of Transportation Federal Highway Administration

Turner-Fairbank

--- 27

Prescriptive Approach Example

<u>Requirement</u>: Classify coarse and fine aggregate separately with T-FAST and ATT (Example. List of approved aggregates).

<u>Pros</u>: Provides flexibility to safely allow the use of high alkali cements and offspec SCMs. Improve efficiency of periodic aggregate evaluation campaign. Detect intrinsic mineralogical variation within quarries.

<u>Cons</u>: More restrictive than the performance approach.

Prescriptive Approach

<u>Step 1</u>: select the Zone # based on AT values of the coarse and fine aggregates.

AT (Na ₂ O _{eq} , kg/m ³)		Zone #	
СА	FA		
≥5	≥5	ZI	
4.0-5.0	4.0-5.0	ZII	
3.5-4.0	3.5-4.0	ZIII	
≤ 3.5	≤ 3.5	ZIV	
All other combinations		Select Zone for lowest AT value	

Prescriptive Approach

<u>Step 2</u>: select the recommendation based on the Zone # and the T-FAST classification of the coarse and fine aggregates.

Zone #	T-FAST Reactivity		Recommendation	Description	
Zone #	CA	FA	Recommendation	Description	
	NR		RI	High alkali cements and/or off-spec SCMs permissible; AL< 4 kg/m ³ .	
	All other com	binations		High alkali cements and/or off-spec SCMs permissible; AL < 3	
	Between N	R to SR	RII	kg/m³.	
11	All other com	binations	RIII	High alkali cements and/or off-spec SCMs permissible; AL < 2	
	Between SI	R to MR	KIII	kg/m³.	
111	All other com	binations	RIV	Follow mitigation methods recommended as per	
IV	Any comb	ination		specifications.	

30

Step 1. Select Zone # based on AT values of the
coarse and fine aggregatesAT
 $(Na_2O_{eq}, kg/m^3)$ Zone #CAFA ≥ 5 ≥ 5 25 ≥ 5 25 ≥ 1 4.0-5.04.0-5.03.5-4.03.5-4.0

≤ 3.5	≤ 3.5	ZIV
All other combinations		Select Zone for lowest AT value

AT (Na ₂ Oeq, kg/m³)		
CA	FA	
5.8	4.3	

Step 2. Select Recommendation based on T-FAST classification and zone of the coarse and fine aggregates				
Zone #	T-FAST Reactivity		Recommendation	
20110 #	СА	FA	Recommendation	
I	NR		RI	
	All other combinations			
Ш	Between NR to SR		RII	
	All other combinations		RIII	
Ш	Between SR to MR			
	All other combinations			
IV	Any com	bination	RIV	

TFAST		
CA	FA	
SR	MR	

--- - - 31

U.S. Department of Transportation Federal Highway Administration

Conclusions: T-FAST

- T-FAST is a highly sensitive test in comparison to AMBT, CPT and MCPT.
- High sensitivity toward carbonate aggregates, mainly dolomites, dolomitic limestones, dolostones and limestones.
- Minimize the risk of mislabeling aggregates (e.g. Slow or moderate classified as non-reactive) thus lowering the risk of inadequate mitigation strategies in the field.

Conclusions: T-FAST & ATT Combination

- ATT is a cost-efficient test that allows to understand field performance of the aggregates.
- T-FAST/ATT combination brings higher accuracy in aggregate classifications (T-FAST and ATT should show agreement).
- Possibility to design performance or prescriptive specification based on T-FAST and ATT.
- Widen your portfolio of mitigation strategies (e.g. use of SCMs other than Class F and Class N).
- Selective usage of effective SCMs (e.g. Class F fly ash) for the more reactive aggregates.

- - - - - - 33

Thank you!

U.S. Department of Transportation Federal Highway Administration

Turner-Fairbank Highway Research Center _____ 34

Any questions?

U.S. Department of Transportation Federal Highway Administration Turner-Fairbank

- - - 35

Contact

Terry Arnold

terry.arnold@dot.gov

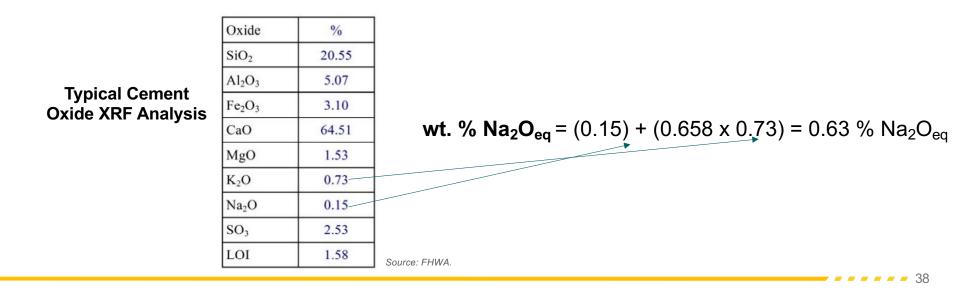
(202) 493-3305

U.S. Department of Transportation Federal Highway Administration

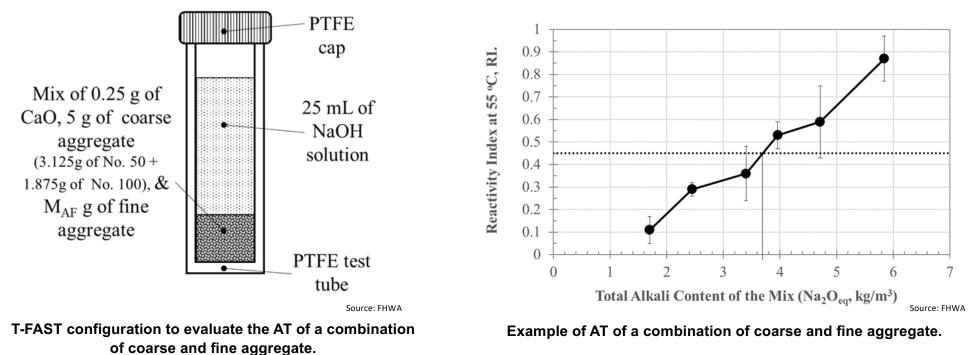
Turner-Fairbank Highway Research Center

© 2021 Peeterv / iStock.

Disclaimer


The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this presentation only because they are considered essential to the objective of the presentation. They are included for informational purposes only and are not intended to reflect a preference, approval, or endorsement of any one product or entity.

<u>Alkali Content</u>: amount of alkalis (Na⁺ and K⁺) of any concrete component (cement, aggregates, etc) expressed as weight % of equivalent alkalies (wt. % Na₂O_{eq})


wt. % $Na_2O_{eq} = (wt. % Na_2O) + (0.658 x wt.% K_2O)$

Example: Alkali content of Cement

U.S. Department of Transportation Federal Highway Administration

Performance Approach Example

- - 39

2 U.S. Department of Transportation Federal Highway Administration

Turner-Fairbank Highway Research Cente