Northeastern States Materials Engineer's Association

Project-Level Analysis of Composite Pavements Using Ground Penetrating Radar

Online Alex Bernier Program Director Connecticut Advanced Pavement Laboratory Connecticut Transportation Institute University of Connecticut

October 26, 2021

Acknowledgements

Lanbo Liu, PhD & James Mahoney Connecticut Transportation Institute Steve Norton & Leo Fontaine Connecticut Dept. of Transportation

- The Need
- The Device
- Case Study No. 1 Dowels or I-Beams
- Case Study No. 2 Deleterious Material Under Composite Pavement
- Case Study No. 3 Voids Under Composite Pavement
- Recommendations on Practice
- On-Going Studies

The Need

- Ground-Penetrating RADAR
 has been around many
 decades
 - Improvements to use of 'off the shelf' equipment
 - Improvement to resolution at shallow depths
- Composite Pavements have unknown condition without costly excavation or

The Need

- Can we push the limits of resolution/technology to reduce need for open excavations
- Can off-the-shelf solutions provide in-the-field answers to subsurface uncertainties

- Ground-Penetrating RADAR
 - RAdio Detection And Ranging
- Generate wide-frequency pulse, interpret difference in waves as they return to the device.
- Applications in roadways back many decades, however technologic limits existed on data collection rate and frequency of antenna

- Case Study No. 1&3 Utilized
 - 1.6 GHz (No. 1 only)
 - 2.6 GHz
- Ground-coupled, analog
 antennas
- 2mm scan spacing/0.0174 nano-seconds

Antenna

Data Acquisition System

- Case Study No. 2 Utilized
 - 2.6 GHz
- Ground-coupled, analog, allin-one concrete scanning device

 Adapting a 3D Concrete Survey to Composite Pavements (Adding a layer to penetrate and interpret)

Photo Source: GSSI

- Lower frequencies → deeper penetration, but limited clarity at shallow depths
- Higher frequencies → shallower penetration, but higher clarity
- Ground-Coupled systems are slower to use
 - can't operate at highway speed
 - preserve energy lost at air/surface interface

Case Study No. 1: Differentiate Load Transfer Devices

- For a period of time, CT DOT permitted the use of i-beam style load transfer devices (LTDs) on Jointed Concrete pavements.
- It is unknown where these load transfer devices remain across the state, but the state desires to replace with modern dowels when encountered.

Case Study No. 1: Differentiate Load Transfer Devices

 Pseudo-Spectral Time Domain simulation performed to determine whether dowels vs. i-beams may be differentiated.

Lanbo Liu, Alexander Bernier, and James Mahoney, (2020), "Push the resolution limit: Can we differentiate the cross-section shape of dowel bars in the concrete with GPR?," SEG Global Meeting Abstracts : 180-183. https://doi.org/10.1190/gpr2020-049.1

Case Study No. 1: Differentiate Load Transfer Devices

- Success!
- Field-confirmed
 - length of LTDs
 - spacing of LTDs
 - structure layer thicknesses
- Hypothesize we did
 encounter i-beam LTDs
 at some locations

- 7-9 inches HMA over PCC in design
- 2.6 GHz all-in-one Ground-Coupled GPR unit
- Surface Distresses prompted investigation

TYPICAL SECTION NUMBERING KEY

- 1. APPLICATION OF GRADE
- 4" PMA S0.5 (2 EQUAL LIFTS) ON TOP OF 1 1/4" TO 2 3/3" HMA S0.375 CURB TO CURB 2.
- 3,5* TO 5* HMA 51 (2 LIFTS) ON TRAVEL LANES з,
- 4, 2" HMA S0.5 ON TOP OF 1 1/4" HMA S0.375
- APPROXIMATE LIMITS OF EXISTING 5. CONCRETE PAVEMENT
- APPROXIMATE LOCATION OF EXISTING BITUMINOUS CONCRETE PAVEMENT
- MILL TO TOP OF CONCRETE PAVEMENT
- RUBBILIZATION OF EXISTING CONCRETE PAVEMENT
- MILL SHOULDERS / CLIMBING LANES FLUSH ÷0. TO ADJACENT CONCRETE

12.

10. MATERIAL FOR TACK COAT

- TURF ESTABLISHMENT WITH 6" TOPSOIL (MAX.) IN AREAS OF EDGEDRAIN OUTLETS 3-CABLE GUIDE RAILING (I-BEAM POSTS) METAL BEAM RAIL (TYPE R-B 350, TYPE MD-B 350) AS REQUIRED
- 13. BITUMINOUS CONCRETE PARK CURBING
- REMOVE CURBING (REMOVAL OF B.C.L.C. WILL BE PAID FOR UNDER THE ITEM 14. "EARTH EXCAVATION")
- 15. 4" EDGEDRAIN

11.

- 16. 3" HMA SO.5 (1 LIFT)
- 17. MILL 3" MAX,
- 18. PROCESSED AGGREGATE
- 19. 3" HMA S0.5 (2 EQUAL LIFTS) ON SHOULDERS AND CLIMBING LANES

- Asphalt layer found to be thicker than original design
- 'Pasty' Effluent and light colored material indicative of a deleterious patch material

 In the field, wavy subgrade signals from GPR seemed to relate to presence of patch material

 Performed analysis of Traffic-Speed Survey Devices (ARAN + iPAVE) to identify potential other sites

- Air-Couple GPR identified location void to be fieldverified with Deflectometer Testing prior to repair
- Deflectometer indicated
 no repair necessary
- 2.6GHz Ground-Coupled brought in to see which NDT method it aligned with
- Attempted On-board 3D scanning software from Controller

- Laid out a 1-ft grid
- Longitudinal + Transverse

- Screen shots from field analysis: Panel 1
 - Seems like voids may exist
 - Unable to core/excavate to confirm
 - Asphalt layer seen to thicken (perhaps for a super elevation)

Joint

Not a Joint

- Screen shots from field
 analysis: Panel 2
 - No visible 'deformations' of signal across the panel
- Moisture plays a role in reading reflections/scans

SCHOOL OF ENGINEERING

Recommendations + Improvements

- Lessons Learned Moving Forward &
 Future Tasks
 - Longitudinal Scans Only for void detection
 - Run 0.5 ft interval
 - Run Normal + Cross-Polarized
 Scans to boost clarity in
 presence of welded wire
 - Build laboratory mock-ups of known composite conditions
 - Truck-Mounted Scanning for longer/faster Collection
 - Ground truthing dielectric for core/scan pairings in CT

Photo Source: GSSI

Current Studies: Pushing the limits

- Can we detect inter-asphalt layer differentials?
- Scans performed in the vicinity of a sand/skim layer
- Cores and test-pits performed as well
- Currently analyzing GPR data for possible identification
- Challenge: Sensitivity of the equipment to detect change in resistivity between different densities of material and accounting for noise of measurement

Questions?

Thank You!

Alex Bernier alex.bernier@uconn.edu

