Northeastern States Materials Engineer’s Association

Project-Level Analysis of Composite Pavements Using Ground Penetrating Radar

Online
Alex Bernier
Program Director
Connecticut Advanced Pavement Laboratory
Connecticut Transportation Institute
University of Connecticut

October 26, 2021
Acknowledgements

Lanbo Liu, PhD & James Mahoney
Connecticut Transportation Institute
Steve Norton & Leo Fontaine
Connecticut Dept. of Transportation
Agenda

- The Need
- The Device
- Case Study No. 1 – Dowels or I-Beams
- Case Study No. 2 – Deleterious Material Under Composite Pavement
- Case Study No. 3 – Voids Under Composite Pavement
- Recommendations on Practice
- On-Going Studies
The Need

• Ground-Penetrating RADAR has been around many decades
 – Improvements to use of ‘off the shelf’ equipment
 – Improvement to resolution at shallow depths
• Composite Pavements have unknown condition without costly excavation or
The Need

• Can we push the limits of resolution/technology to reduce need for open excavations
• Can off-the-shelf solutions provide in-the-field answers to subsurface uncertainties
The Device

• Ground-Penetrating RADAR
 – RAdio Detection And Ranging
• Generate wide-frequency pulse, interpret difference in waves as they return to the device.
• Applications in roadways back many decades, however technologic limits existed on data collection rate and frequency of antenna.
The Device

- Case Study No. 1 & 3 Utilized
 - 1.6 GHz (No. 1 only)
 - 2.6 GHz
- Ground-coupled, analog antennas
- 2mm scan spacing/0.0174 nano-seconds
The Device

• Case Study No. 2 Utilized
 – 2.6 GHz
• Ground-coupled, analog, all-in-one concrete scanning device
The Device

• Adapting a 3D Concrete Survey to Composite Pavements (Adding a layer to penetrate and interpret)

Photo Source: GSSI
The Device

- Lower frequencies ➔ deeper penetration, but limited clarity at shallow depths
- Higher frequencies ➔ shallower penetration, but higher clarity
- Ground-Coupled systems are slower to use
 - can’t operate at highway speed
 - preserve energy lost at air/surface interface
Case Study No. 1: Differentiate Load Transfer Devices

- For a period of time, CT DOT permitted the use of i-beam style load transfer devices (LTDs) on Jointed Concrete pavements.
- It is unknown where these load transfer devices remain across the state, but the state desires to replace with modern dowels when encountered.
Case Study No. 1: Differentiate Load Transfer Devices

- Pseudo-Spectral Time Domain simulation performed to determine whether dowels vs. i-beams may be differentiated.

https://doi.org/10.1190/gpr2020-049.1
Case Study No. 1: Differentiate Load Transfer Devices

- Success!
- Field-confirmed
 - length of LTDs
 - spacing of LTDs
 - structure layer thicknesses
- Hypothesize we did encounter i-beam LTDs at some locations
Case Study No. 2: Deleterious Material on Rubbleized PCC

- 7-9 inches HMA over PCC in design
- 2.6 GHz all-in-one Ground-Coupled GPR unit
- Surface Distresses prompted investigation
Case Study No. 2: Deleterious Material on Rubbleized PCC
Case Study No. 2: Deleterious Material on Rubbleized PCC

- Asphalt layer found to be thicker than original design
- ‘Pasty’ Effluent and light colored material indicative of a deleterious patch material
In the field, wavy subgrade signals from GPR seemed to relate to presence of patch material.
Case Study No. 2: Deleterious Material on Rubbleized PCC

- Performed analysis of Traffic-Speed Survey Devices (ARAN + iPAVE) to identify potential other sites
Case Study No. 3: Voids Under Composite Pavement

- Air-Couple GPR identified location void to be field-verified with Deflectometer Testing prior to repair
- Deflectometer indicated no repair necessary
- 2.6GHz Ground-Coupled brought in to see which NDT method it aligned with
- Attempted On-board 3D scanning software from Controller
Case Study No. 3: Voids Under Composite Pavement

- Laid out a 1-ft grid
- Longitudinal + Transverse
Case Study No. 3: Voids Under Composite Pavement

- Screen shots from field analysis: Panel 1
 - Seems like voids may exist
 - Unable to core/excavate to confirm
 - Asphalt layer seen to thicken (perhaps for a super elevation)
Case Study No. 3: Voids Under Composite Pavement

- Screen shots from field analysis: Panel 2
 - No visible ‘deformations’ of signal across the panel
- Moisture plays a role in reading reflections/scans
3D Scan

Playback Mode - I91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 0.00 ft
Slice Thickness 0.15 ft x 2

(6.0ft, 25.0ft)

View Toggle 19 Gain Fence Y H Cursor 48 Rotate Output
3D Scan

Playback Mode - I91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 0.15 ft
Slice Thickness 0.15 ft x 2
3D Scan

Playback Mode - I91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 0.30 ft
Slice Thickness 0.15 ft x 2
3D Scan

Playback Mode - I91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 0.51 ft
Slice Thickness 0.15 ft x 2
3D Scan

Playback Mode - I91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 0.60 ft
Slice Thickness 0.15 ft x 2

(6.0 ft, 25.0 ft)
3D Scan

Playback Mode - I91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 0.72 ft
Slice Thickness 0.15 ft x 2
3D Scan

Playback Mode - I91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 0.81 ft
Slice Thickness 0.15 ft x 2
3D Scan

Playback Mode - J91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 0.90 ft
Slice Thickness 0.15 ft x 2

(6.0ft, 25.0ft)
3D Scan

Playback Mode - I91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 1.02 ft
Slice Thickness 0.15 ft x 2

(6.0ft, 25.0ft)
3D Scan

Playback Mode - I91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 1.11 ft
Slice Thickness 0.15 ft x 2

(6.0ft, 25.0ft)
3D Scan
Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 1.32 ft
Slice Thickness 0.15 ft x 2

(6.0 ft, 25.0 ft)
3D Scan

Playback Mode - I91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size 4 MB

Slice Depth 1.4 ft
Slice Thickness 0.15 ft x 2

(6.0ft, 25.0ft)

View Toggle 19 Gain Fence Y H Cursor 48 Rotate Output
3D Scan

Playback Mode - I91SB - GRID_002

Total # of lines: 33 (26 X, 7 Y)
Estimated Size: 4 MB

Slice Depth: 1.50 ft
Slice Thickness: 0.15 ft x 2
Recommendations + Improvements

- Lessons Learned Moving Forward & Future Tasks
 - Longitudinal Scans Only for void detection
 - Run 0.5 ft interval
 - Run Normal + Cross-Polarized Scans to boost clarity in presence of welded wire
 - Build laboratory mock-ups of known composite conditions
 - Truck-Mounted Scanning for longer/faster Collection
 - Ground truthing dielectric for core/scan pairings in CT

Photo Source: GSSI
Current Studies: Pushing the limits

- Can we detect inter-asphalt layer differentials?
- Scans performed in the vicinity of a sand/skim layer
- Cores and test-pits performed as well
- Currently analyzing GPR data for possible identification
- Challenge: Sensitivity of the equipment to detect change in resistivity between different densities of material and accounting for noise of measurement
Questions?

Thank You!

Alex Bernier
alex.bernier@uconn.edu