Evaluation of the Asphalt Binder Cracking Device (ABCD)

Presented By:

Thomas Bennert, Ph.D. Center for Advanced Infrastructure and Transportation (CAIT) Rutgers University

Northeast States Materials Engineers Association (NESMEA) October 26th 2021 (Somewhere from my house)

Acknowledgements

- Work be conducted under the NJDOT Pavement Support Program (Manager: Robert Blight)
- Rutgers Asphalt Pavement Lab (RAPL) Staff
 - Asphalt Binder: Nick Cytowicz, Chris Ericson
 - Asphalt Mixture: Ed Haas, Drew Tulanowski, Ed Wass Jr.

Once Upon a Time in the 1990's...

Fast Forward to 2011 - ΔT_c from BBR Testing

- As asphalt binders age, the relaxation properties (m-value) are negatively affected at greater rate than the stiffness (S)
 The difference between the low
- temperature cracking grade of m-value and S is defined as the ΔT_c $\Delta T = T - T$
 - $\Delta T_{c} = T_{c, S} T_{c, m-value}$
- AAPT (Anderson et al., 2011) showed that the ΔT_c correlated to non-load associated cracking on airfields (i.e. – cracking due to lose of ductility from aging)

ΔT_{c} from BBR Testing

Asphalt Institute Technical Document

State-of-the-Knowledge: Use of the Delta T_c Parameter to Characterize Asphalt Binder Behavior

October 4, 2019

Asphalt Institute Technical Advisory Committee 2019 ISBN: 978-1-934154-77-9 Copyright © Asphalt Institute 2019 All Rights Reserved

Agency	ΔT_c Requirement, °C	PAV Aging Duration, hrs.	Status
Florida DOT	<u>></u> -5.0	20	Current
Utah DOT	<u>></u> -2.0	20	Current ²
PANYNJ	<u>></u> -5.0	40	Current
Vermont DOT	<u>></u> -5.0	40	Current
Maryland DOT	<u>></u> -5.0	40	Current
Kansas DOT	<u>></u> -5.0	40	Current
Ontario MTO	<u>></u> -5.0	20	Current
Texas DOT	<u>></u> -6.0 ⁴	20	Current ⁴
Oklahoma DOT	<u>></u> -6.0	20	2020 ³
Delaware DOT	<u>></u> -5.0	40	2020 ³

¹ Consult Asphalt Institute web site for current asphalt binder specification database

(www.asphaltinstitute.org)

² Only applies to binders with ≥ 92° c temperature spread; BBR creep stiffness ≥ 150 MPa

³ Applies to project tendered for bid beginning 1/1/2020

⁴ Only applies to Balanced Mix Design projects. For comparison, TxDOT requirement is shown using ΔT_c computed by $\Delta T_c = T_{c,S} - T_{c,m}$; actual requirement is $\Delta T_c \le 6^{\circ}$ C using the equation $\Delta T_c = T_{c,m} - T_{c,S}$. (41)

ΔT_{c} from BBR Testing

- - Found to be related to relaxation properties of asphalt binders
 - Sensitive to asphalt binder elements that may accelerate age hardening
- However, some concern over heavily polymer modified binders
 - Asphalt binder phase angle related to $\Delta T_{\rm c}$ (relaxation properties)
 - High PMA reduces $\delta_{\rm r}$ which results in poor performance with $\Delta {\rm T_c}$
- There is a need for a test method that can capture fracture & strain tolerance properties (properties enhanced by polymers)

Asphalt Binder Cracking Device (ABCD) – AASHTO T₃87

T_{cr} the ABCD Testing

- The ABCD determines the critical cracking temperature due to thermally induced stress
 - Asphalt binder poured between an invar and latex mold to form a ring
 - Chamber cools the specimens at -20°C per hr
 - Strain gauge determines when "cracking" occurs and specimen temperature when this occurs is determined as T_{cr}

Asphalt Binder Cracking Device (ABCD)

- System utilizes four (4) rings and temperature chamber
 - ≈ 11 grams binder per ring
 - Rings instrumented with thermistor and strain gauge
- Precision/Bias for T_{cr}
 - Single Operator Range of Results
 - Cracking Temp = 2.69°C
 - Fracture Stress = 2.43 MPa
 - Multiple Operator Range of Results
 - Cracking Temp = 3.85°C
 - Fracture Stress = 3.20 MPa

ABCD vs Low Temperature PG

In general, colder ABCD T_{cr} than low temperature PG

ΔT_{f} - ABCD Testing

- The T_{cr} parameter by itself may not provide a good correlation to cracking for all binders
 - T_{cr} is a function of fracture strength, which in turn is a function of the stiffness
- Modifiers like REOB reduces stiffness
 To normalize the impact of stiffness, NCHRP 9-60 researchers recommended ∆T_f

$$\Delta T_{f} = T_{c, S} - T_{cr}$$

NCHRP 9-60 Approach

NCHRP 9-60 Approach

- As the asphalt industry moves towards Balance Mixture Design, suppliers will turn to the liquid supplier for guidance
 A methodology that better predicts/ranks cracking potential of asphalt binders is
 - critical
 Rutting is pretty well defined with the high temperature PG grade and Multiple Stress Creep Recovery (MSCR) tests

Sensitivity to Asphalt Modifiers

Sensitivity to Modifiers - REOB

- REOB used to obtain low temperature grades from stiffer asphalts
 - Small dosages with compatible base can be helpful
 - Higher dosages will drive binder performance to lower left of space
 - Increased age hardening
 - Decrease in fracture strength

Sensitivity to Modifiers - SBS

- Increase in SBS will improve fracture toughness
 - However, lower resultant phase angles may show more negative $\Delta {\rm Tc}$
- NCHRP 9-60 identified in early studies how SBS performed, resulting in curved area

Sensitivity to Modifiers – Recycled Asphalt

- Asphalt binder recovered from top ½" of FHWA ALF
 - Higher recycled content/harder recycled asphalt drives to lower left of space
 - Approach could provide insight into rejuvenator selection

Sensitivity to Modifiers – Recycled Plastics

- Different recycled plastic types high shear milled into a PG64-22 and PG58-28 asphalt binder
 - Differentiates the impact of plastic type & base asphalt binder grade

Field Performance

Field Verification

- Multiple pavements noted as having top-down cracking used to help validate tests and proposed criteria
 - Asphalt airfield pavements
 - PANYNJ field engineers observations
 - FAA Extended Pavement Life project
 - Consultant visual distress surveys
 - FHWA ALF Experiment
 - Cycles to 1st Crack
 - NYSDOT Modifier Study

Asphalt Airfield Pavements

Airfield Pavement	Intermediate Temp	∆Тс	ΔTf	Visual Distress
Tuscon	29	-4.2	-2.0	Block, L&T Cracking, PCI = 56 (+/- 20)
Kansas City	22	-6.8	-1.8	Block, L&T Cracking, PCI = 57 (+/- 17)
BWI	25	0.4	2.2	Low Severity Weathering, PCI = 93 (+/- 3)
Columbus	22	-1.2	3.3	No Cracking, PCI = 100
Greensboro	27	-4.0	1.8	Low Severity Weathering/Cracking, PCI = 89 (+/- 2)

FHWA ALF Sustainability Study

Lane	Δтс	ΔTf	ABCD Tcr	LT (s)	LT (m)	Cycles to 1st Crack
Lane 1	-1.9	-5.1	-23.0	-28.1	-26.2	368,254
Lane 3	-8.2	-12.3	-15.0	-27.3	-19.1	42,399
Lane 4	-4.5	3.1	-26.3	-23.2	-18.7	88,740
Lane 5	-11.8	-14.1	-9.9	-24.0	-12.2	36,946
Lane 6	-6.8	-4.3	-19.5	-23.8	-17.0	122,363
Lane 7	-12.2	-10.1	-19.5	-29.6	-17.4	23,005
Lane 8	-8.9	-9.0	-17.7	-26.7	-17.8	47,679
Lane 9	-2.4			-25.9	-23.5	270,058
Lane 11	-4.0	-3.9	-21.1	-25.0	-21.0	81,044

NYSDOT Modifier Study

- NYSDOT evaluated different asphalt modifiers
 - Plant produced and placed in field for evaluation
- NY Rt. 32 SB
 - 9.5mm surface course, 5.7% AC
 - Binders formulated to achieve 76-22
- 5 years of surface life (2020) no distress observed on any section

Mixture Testing – DC(T)

- Current research at Rutgers looking at how the mixture performance results fall within the NCHRP 9-60 approach
 - Asphalt binders recovered from mixture performance specimens

ABCD Low Temperature Critical Cracking (°C)

 International International Internatione International International International International Inte	Project Criticality/Traffic Level			
Contents	Low <10M ESALs	Moderate 10–30M ESALs	High >30M ESALs	
Minimum Fracture Energy (J/m ²)@low-temperature PG+10 ° C	400	460	690	

ESAL = equivalent single axle loads.

General Conclusions and Observations

General Conclusions and Observations

- The ABCD test shows promise in characterizing asphalt binders
 - BBR good for stiffness and relaxation & ΔTc
 - ABCD for thermal contraction, strain tolerance, fracture toughness
- Combined with ∆Tc, a performance space can be generated that shows good correlation to field performance
 - Support and guidance on asphalt binder selection will be needed as we move into BMD
- NCHRP 9-60 proposed inclusion in grading
 - Determine ΔTc from BBR
 - If -6C < ∆Tc < -2C, conduct ABCD to evaluate fracture toughness

Thank you for your time! Questions?

Be CAREFUL WHEN YOU ONLY READ CONCLUSIONS...

Reference: The Anscombe's quartet, 1973

Designed by @YLMSportScience

Thomas Bennert, Ph.D. Rutgers University 609-213-3312 bennert@soe.rutgers.edu