2020 NESMEA

Assessment of Active Filler impact on Cold Recycled Asphalt Mixture Properties

Ph.D. student: Francesco Preti

UNH advisors: **Dr. Eshan V. Dave and Dr. Jo E. Sias** U. Parma advisors: **Dr. Gabriele Tebaldi and Dr. Elena Romeo**

Special thanks to **Beatriz Chagas Silva Gouveia**

Contents

- Introduction on Cold Recycling technologies
- > Objectives and motivations
- Laboratory campaign
- > Experimental results
- Constitutive model
- Summary and ongoing research

Cold Recycling technologies

- > **Recovering and re-using** material from an existing pavement **without the addition of heat.**
- > 100% of the milled material from an existing pavement (RAP) can be recycled.
- > No need for transporting the material: the mixture is prepared on site or in mobile plants.

Cold Recycling technologies

Mixture components:

- Reclaimed asphalt pavement (RAP)
- Asphalt stabilizing agent (foamed asphalt or emulsified asphalt)
- Mineral filler and/or active filler (cement, lime...)
- Water (compaction and chemical reactions)

Technologies:

- Cold In-Place Recycling (CIR)
- Cold Central Plant Recycling (CCPR)

Cold Recycling technologies

The obtained product is called **Bituminous Stabilized Material** (BSM)

Deformability (Rutting Risk)

PARTIALLY-BONDED MATERIALs

Asphalt stabilizing agents

Adhesive mastic dispersed in the mixture

<u>Emulsified asphalt</u>

➢ Foamed asphalt

Asphalt droplets suspended in water

Aggregates fully coated

Fillers & active fillers

Fillers micro-structure:

<u>Purposes of incorporating active fillers:</u>

- > Improve **adhesion** of the binder to the aggregates
- > Improve **dispersion** of the binder in the mix
- > Increase **stiffness & strength gain** of mix
- >Accelerate curing of compacted mix

Active filler: Cement

PARTIALLY BOUNDED MATERIAL (BSM) = ASPHALT IS THE BINDER

VS

CEMENT TREATED MATERIAL = CEMENT IS THE BINDER

Active filler: Hydrated lime

$CaO + H_2O \rightarrow Ca(OH)_2 + 15.5 kCal$

- The application rate may be increased with respect to cement
- Less concerns related to loss in flexibility
- > A blend of cement and hydrated lime could be used

Contents

- Introduction on Cold Recycling technologies
- Objectives and motivations
- Laboratory campaign
- > Experimental results
- Constitutive model
- Summary and ongoing research

Objectives

- > Evaluate the **effect of introducing active fillers** in cold recycled mixtures
- > Develop a **framework** to experimentally characterize BSMs
- Assess the influence of temperature and confining pressure on material mechanical properties
- Create a constitutive model for BSMs and incorporate it in pavement design and analysis

Motivations

- No many information are available on active filler influence on cold recycled mixtures mechanical properties
- BSMs are partially-bonded materials (heterogeneous)

Mechanical properties are simultaneously...

- temperature dependent (HMA)
- confining pressure dependent (Crushed aggregates)

need for a specific method of characterization

Predominant mode of failure is believed to be accumulation of plastic deformation
 <u>need information on material plastic response</u>

Contents

- Introduction on Cold Recycling technologies
- > Objectives and motivations
- Laboratory campaign
- > Experimental results
- Constitutive model
- Summary and ongoing research

Laboratory equipment

- > Asphalt foaming machine
- Laboratory mixer 30 kg capacity
- Vibrating hammer

Indirect Tensile Strength (ITS)

0.001

0

0.002

3

0.003

0.004

0.005

- ➢ Tests are performed at 25 deg C. only
- > Does not provide information on plastic properties of the material
- > Cracking risk is not the main concern for BSMs

All of the tests were performed after 28 days curing period at room temperature (@25 deg C.)

Triaxial Shear Test

The Mohr–Coulomb (MC) failure criterion

- > Confining pressure effect on shear capacity can be evaluated
- > Provides information on plastic properties of the material: cohesion and friction angle values can be calculated
- Simple test and easy to run

All of the tests were performed after 28 days curing period at room temperature

Laboratory campaign

Mix design using **foamed asphalt** and **cement** as active filler

RAP	93%	93%	93%	93%
Mineral Filler	7%	6%	5.5%	5%
Cement	0%	1%	1.5%	2%
Foamed Asphalt	3%	3%	3%	3%

Mix design using **asphalt emulsion** and **hydrated lime** as active filler

RAP	95%	95%	95%	95%	95%
Mineral Filler	4%	3%	2%	1%	0%
Hydrated Lime	1%	2%	3%	4%	5%
Asphalt Emulsion	3.3%	3.3%	3.3%	3.3%	3.3%
Residual asphalt binder	2%	2%	2%	2%	2%

Contents

- Introduction on Cold Recycling technologies
- Objectives and motivations
- Laboratory campaign
- Experimental results
- Constitutive model
- Summary and ongoing research

Indirect Tensile Strength

- ITS reaches a maximum value when 3%
 hydrated lime is added to the mix
- High application rates (> 3%) of hydrated lime seem to have a negative effect on ITS

- ITS reaches high values already at 1% cement application rate
- ITS wet > ITS dry for the 2% cement content suggests that there was unreacted cement in the mix

Internal friction angle

Typical values for BSM are in between 30 and 40°

> Internal friction angle value is **not influenced by the presence of active filler**

> It is believed to be mostly dependent on **RAP gradation**

Cohesion

Typical values for BSM are in between 100 and 250 kPa

- Cohesion is in the BSM boundaries for all
 hydrated lime application rates
- Lime does not have a major impact on plastic properties

- Cohesion exponentially increases for cement application rates higher than 1%
- Cement strongly impacts plastic response

Effect of Temperature on Mechanical Properties

> Replicates gave very **consistent results** (repeatability of triaxial test)

- Material does not give a linear response
- > When **temperature decreases** and **confining pressure increased** the material stiffens
- > Importance of considering triaxial test for **analysis and design**

Effect of Temperature on Plastic Properties

Reference mixture: 2% hydrated lime and asphalt emulsion

- Cohesion is a temperature dependent property
- > Internal friction angle is not affected by testing temperature (controlled by particle to particle contact)

Effect of Temperature on Elastic Properties

Reference mixture: 2% hydrated lime and asphalt emulsion

Resilient Modulus is a temperature dependent property in BSMs

Contents

- Introduction on Cold Recycling technologies
- > Objectives and motivations
- Laboratory campaign
- > Experimental results
- Constitutive model
- Summary and ongoing research

3D Elasto-Plastic Finite Element Model for BSM

Paper accepted for publication: RILEM International Symposium on Bituminous Materials – Lyon, France 2020

26

Multilayer 2D Axisymmetric Model

Paper selected for presentation TRB 2021 and accepted for publication TRR 2021

Contents

- Introduction on Cold Recycling technologies
- > Objectives and motivations
- Laboratory campaign
- > Experimental results
- Constitutive model
- Summary and ongoing research

Summary

- Triaxial shear and resilient modulus tests are better suited characterization method than ITS for partially-bonded materials like BSMs
- Friction angle is controlled by particle to particle contact in BSMs: the asphalt content is not high enough to contribute to friction
- Cement strongly impacts the cohesion of the material (does not happen with lime)
- Cohesion and elastic modulus in BSMs are temperature and confining pressure
 dependent properties
- > The introduction of BSM plastic properties in the design and analysis of pavement structure

Ongoing research

- Evaluate the influence of curing time on mechanical properties of cold recycled mixtures (<u>MnDOT-LRRB CIR curing project</u>)
- > Investigate the use of **quick lime** as active filler

(In collaboration with University of Stellenbosch, South Africa)

 $CaO + H_2O \rightarrow Ca(OH)_2 + 15.5 \text{ kCal}$

- 1. The reaction produces heat, that could allow to **extend the construction season**
- 2. Control of **water content** (reaction + evaporation)

Thank you for your time!

