Instant Air Meter Measurement of Air Content in Fresh Concrete

Jed Wilbur, Marc Ramsey, Adam Niblick
jcw@creare.com
Creare LLC

Rick Meininger, Ahmad Ardani
FHWA

Kimberly Kurtis, Scott Smith
Georgia Tech, Civil Engineering

27 October 2020
Contract No.: 6913G618C100008L
Period of Performance: May 17, 2018–May 16, 2020
SBIR Topic Number: 17.1-FH2

SBIR Rights Notice (Dec 2007)

These SBIR data are furnished with SBIR rights under Contract No. 6913G618C100008L. For a period of 4 years, unless extended in accordance with FAR 27.409(h), after acceptance of all items to be delivered under this contract, the Government will use these data for Government purposes only, and they shall not be disclosed outside the Government (including disclosure for procurement purposes) during such period without permission of the Contractor, except that, subject to the foregoing use and disclosure prohibitions, these data may be disclosed for use by support Contractors. After the protection period, the Government has a paid-up license to use, and to authorize others to use on its behalf, these data for Government purposes, but is relieved of all disclosure prohibitions and assumes no liability for unauthorized use of these data by third parties. This notice shall be affixed to any reproductions of these data, in whole or in part.
Corporate Profile

- Contract Engineering R&D
- Hanover, NH
- Industrial and Federal Client Base
- Founded in 1961
- Owned by Partnership of Engineers

160+ Employees
- 70+ Engineers (55% Ph.D., 30% M.S.)
- 40 Technicians, Machinists, Drafters (30% B.S., 30% A.S.)

Technology Commercialization
- Licensing
- Spin-Off Companies
- Custom Products
Creare Spin-Offs Employ 2,300 and Generate Over $475M in Annual Revenues
Overview

• **SWAM** – Shock Wave Air Meter
 - **Total Air** and **Specific Surface** in fresh concrete
 - More accurately predict **Hardened Spacing Factor**
 - Handheld
 - Instantaneous

• Improve QC
 - Quality
 - Frequency
Technology Status

- Early Development
- One Prototype, In Flux
- Seeking Industry Feedback and Input
Concrete Air Quality

Air voids in hardened concrete are critical for freeze-thaw durability; Voids give expanding water a place to migrate into.
Air Void Parameters

Number Density: \(n = \# / \text{in}^3 \)

Total Air: \(VF = nD^3 \)

Specific Surface: \(SS = \frac{D^2}{D^3} = \overline{D}^{-1} \)

Spacing Factor: \(SF = \overline{L} \approx \frac{PF}{SS \cdot VF} \)

- **Spacing Factor is what matters**
 - Target typically \(SF \leq 0.008” \)
- Cannot measure SF fresh
- Can infer by measuring VF and SS
- In static concrete, SF more likely to be stable
 - When bubbles grow/shrink, VF and SS move in opposite directions

Snyder, Adv Cem Bas Mat, 1998
Existing Measurement Methods

• Hardened Petrographic Analysis
 ➢ ASTM C457
 ➢ Expensive, delayed

• Fresh Air
 ➢ ASTM C231 Pressure
 ➢ ASTM C138 Gravimetric
 ➢ ASTM C173 Volumetric

• Fresh, Additional Parameters
 ➢ Germann AVA-3000
 ➢ Super Air Meter
C231 Pressure Meter most common
• Trained technician, 5–10 minutes
• Ideal accuracy: ~ ± 0.8 percentage points
• Correlation to hardened air:
 ~ ± 2 percentage points
• SF prediction uncertainty > ± 0.004” (100 μm)

Saucier, Pigeon, and Cameron, ACI Mat. J. (1991)
AVA – Predicting Hardened Properties

- Poor correlation to hardened
- Uncertainty (bias-corrected):
 - **Air:** $> \pm 2$ percentage points
 - **SS:** $> \pm 250$ in.$^{-1}$ (10 mm$^{-1}$)
 - **SF:** $> \pm .004$ in. (100 μm)

AVA - Predicting Hardened Spacing Factor

- Very weakly correlated
- Uncertainty (bias-corrected): $\sim \pm 0.008''$ (200 μm)

Problem Summary

• What matters (physically) is **Hardened Spacing Factor**
 - Typical target \(\leq 0.008" \)
 - Need to predict when fresh

• Fresh Air – Pressure Meter
 - 5–10 minutes, effortful, tedious
 - Hardened Spacing Factor uncertainty \(\geq 0.004" \)

• AVA
 - 25 minutes, mortar separated by agitation
 - Hardened Spacing Factor uncertainty \(\pm 0.004 - 0.008" \)

• Super Air Meter
 - 10 minutes, more tedious
 - Tanesi, FHWA (2016): “… better correlation between fresh air content and spacing factor than … between SAM number and spacing factor”
SWAM Instrument
Principle of Operation

- Piston coupled to fresh concrete
- Shock wave launched into the concrete
- We measure a compressibility and relaxation time parameter
- Compressibility related to total air
 - Bubbles are squishy!
- Relaxation time related to bubble size (specific surface)
 - Small bubbles respond quickly
 - Large bubbles take more time
SWAM Use
Test Matrix

- Georgia Tech – Kim Kurtis, Scott Smith
- 83 total mixes, typical of transportation projects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Category #1: 64 Mixtures</th>
<th>Category #2: 9 Mixtures</th>
<th>Category #3: 8 Mixtures</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/cm (lb/lb)</td>
<td>0.40, 0.45, 0.50, 0.55</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Design Air Content (%)</td>
<td>2, 4, 6, 8</td>
<td>4</td>
<td>4²</td>
</tr>
<tr>
<td>Coarse Aggregate Volume</td>
<td>0.62, 0.70</td>
<td>0.62, 0.66, 0.70</td>
<td>0.66</td>
</tr>
<tr>
<td>Fraction (%/100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMAS (in) (Gradation (#))</td>
<td>1” (#57),</td>
<td>0.75 (#6), 1 (#57), 1.25 (#4)</td>
<td>#57</td>
</tr>
<tr>
<td>SCM Type</td>
<td>N.A.</td>
<td>N.A.¹</td>
<td>Class F and C Fly Ash, Limestone Powder, Slag²</td>
</tr>
<tr>
<td>SCM Replacement (% wt. of OPC) (%)</td>
<td>N.A.</td>
<td>N.A.</td>
<td>20 and 40</td>
</tr>
<tr>
<td>Admixture Combination</td>
<td>AEA, AEA + WRA</td>
<td>AEA</td>
<td>AEA</td>
</tr>
</tbody>
</table>

1. For replicate mixtures from Category #1, OPC will be replaced by Class F Fly Ash by 20% by mass.
2. For replicate mixtures from Category #2, design air content will be 6%.
Achieved Air Diversity

ASTM C457 Petrographic Results

Specific Surface (1/in.) vs. Total Air (%)

Spacing Factor (in.)

- 0.015
- 0.01
- 0.005
Hardened Air

Pressure Meter

Fresh Air, ASTM C231 Pressure Meter (%) vs Hardened Air, ASTM C457 (%)

- R^2: 0.66
- Std Err: 1.4%

SWAM

Fresh Air, SWAM (%) vs Hardened Air, ASTM C457 (%)

- R^2: 0.67
- Std Err: 1.4%
Feasibility Results

- 14 concrete samples
 - 3/8” aggregate
 - 30% paste
 - Constant slump
 - Only one variable: AE admixtures

- SWAM
 - 3 insertions, 3 measurements
 - 2 different days

![Void Fraction](image1)

![Specific Surface](image2)

- Void Fraction
 - \(R^2: 0.88 \)
 - Std Err: 0.63%

- Specific Surface
 - \(R^2: 0.97 \)
 - Std Err: 38 in.\(^{-1}\)
• Traced problem to faulty O-ring in critical subsystem
• Initial laboratory testing with improved O-ring are encouraging
Summary

• **SWAM:**
 - Hardened Air
 - Standard error: ~1.4 percentage points
 - Similar to pressure/gravimetric methods
 - Hardened Spacing Factor
 - Standard error: ~0.003"
 - Slightly superior to existing fresh methods (AVA)
 - Quick, simple
 - Will get better:
 - More accurate specific surface → more accurate spacing factor
 - Battery powered, real-time display
 - Bluetooth / QR codes for data logging
Discussion

• Next Steps (2 years):
 ➢ Fix O-ring (and other) issues and validate
 ➢ Add user interface
 ➢ Produce several “real” prototypes
 ➢ Industry and DOT field trials
 – Always looking for potential field test opportunities
Elastomer Calibration Articles

No Air Moderate Air More Air