Moisture Damage in HMA with Marginal Aggregates

84th Annual NESMEA Conference October 8, 2008 Atlantic City, NJ

> Mansour Solaimanian, Penn State University

Steve Snyder Pennsylvania Department of Transportation

Research Personnel

Project Technical Director

 Steve Snyder (PennDOT District 1-0 Materials Manager)

Research Team

- Jason Chang (Graduate Student PSU)
- Ghassan Chehab (Assistant Professor -PSU)
- Scott Milander (Lab Manager- PSU)

Depleting Aggregate Sources

District 1-0 Available Aggregates

Approximately 30 to 35 Sand and Gravel Operations.

Of that total only 1 source is able to meet the current Bituminous criteria for # 8's, needed 9.5mm mixes.

 That source will be depleted in approximately 5 years.

Aggregate Selection Criteria

- PennDOT Bituminous Type A Course Aggregate Requirements
 - Crush Count
 - LA Abrasion
 - Sodium Sulfate
 - Absorption
 - Gradation
 - Skid Resistance Level

Coarse Agg. Quality Requirements

	Type A	Туре В	Type C
Soundness, Max. %	10	12	20
Abrasion, Max. %	45	45	55
Thin and Elongated Pieces, Max. %	15	20	—
Material Finer Than 75 μm (No. 200) Sieve, Max. %	*	*	10
Crushed Fragments, Min. %	55	55	50
Compact Density (Unit Weight), ³ Min. kg/m ³ (lbs./cu. ft.)	1100 (70)	1100 (70)	1100 (70)
Deleterious Shale, Max. %	2	2	10
Clay Lumps, Max. %	0.25	0.25	3
Friable Particles, Max. % (excluding shale)	1.0	1.0	_
Coal or Coke, Max. %	1	1	5
Glassy Particles, Max. %	4 or 10	4 or 10	
Iron, Max. %	3	3	3
Absorption, Max. %	3.0	3.5	
Total of Deleterious Shale, Clay Lumps, Friable Particles, Coal, or Coke Allowed, Max. %	2	2	15

The Stopper

Type A Sodium Sulfate requirement of 10% or less.

Type A Absorption requirement of 3% or less.

 Many of District 1-0's sources are between 12% and 20% on the Sodium Sulfate test.

All other requirements can be met and the materials have an excellent skid value.

Outsource Aggregates

- District producers forced to acquire aggregates from outside the District.
- Materials are brought in by boat, rail, and truck.
- SRL E material hauled a 100 mile distance for District 1-0 SMA projects.
- Result: Increase in the cost of the raw material.

The Idea

- To use District 1-0 local aggregates on lower volume roads.
- To evaluate HMA performance with these aggregates to determine what would be the best course of action if the materials were to be incorporated.
- To implement the best course of action on an actual project and then monitor its performance.

Materials Five Gravel Aggregate Sources One Limestone Aggregate For each aggregate Control

- Liquid Antistripping Agent (LAS)
- 50/50 Blend on #8 Material (Gravel+Limestone)
- 1% Lime (No Data Yet)

Aggregates to Be Evaluated

Aggregate Quality

Aggregate Quality

AASHTO T-283 (PennDOT Version)

- Model Mobile Load Simulator (MMLS3)
- Dynamic Modulus (Repeated Freeze-Thaw Cycles)
- Environmental Conditioning + Dynamic Modulus?

Moisture Sensitivity (AASHTO T-283)

51 mm / min @ 25 °C

Wet **──** ≥ 85 % TSR =Dry

MMLS3 – Specimen Set-Up

MMLS3- Dry/Wet Testing

MMLS3 – Profile Measurements

MMLS3 – Wet Testing

T = 52 °C

Dynamic Modulus Testing

Dynamic Modulus Test

AXIAL STRAIN

0.15

Conditioning under Vacuum

Saturation Levels

Tensile Strength Results

TSR Results

Model Mobile Load Simulator (MMLS3)

MMLS3 – Dry Testing

MMLS3- Wet Testing

MMLS3 – Rut Measurement

Distress Evaluation

MMLS3 – Wet Testing

MMLS3 – Dry Testing

MMLS3 – Dry/Wet Comparison

Further Analysis with Dyn. Mod.

- Modulus is the primary input to the AASHTO MEPDG rutting and fatigue models
- Impact of Repeated Freeze-Thaw Cycles on Modulus
- Effect of Levels of Moisture Damage on Pavement Life
- How much more rutting and cracking for a 10, 20, 30, etc percent reduction in modulus?

AASHTO MEPDG Rutting Model

Field Calibrated Coefficients

 $\mathcal{E}_{p} = \mathcal{E}_{r} \left(a_{1} T^{a_{2}} N^{a_{3}} \right)$

 $RD = \sum_{i=1}^{k} \left(\varepsilon_p \right)_i h_i$

From Layered Elastic Analysis Depends on E*

Further Analysis

Schwartz, 2004 -AC Rutting Percent of Design Distress Alligator Cracking 100 -**Percent of Design Modulus**

Using ECS/DM Test Set-Up?

Summary

- Type A Aggregate is Depleting in District 1-0
- Could We Utilize Type B and C Aggregates?
- Laboratory Evaluation of 5 Local Aggregates
 - Tensile Strength Ratio
 - Model Mobile Load Simulator
 - Dynamic Modulus after Repeated Freeze/Thaw

Summary

- Significant Improvement with LAS
- Some Improvement with 50/50 Blend
- Evaluate Modulus Reduction with Repeated Freeze/Thaw
- Analysis of MMLS3 Data
- Utilize ECS/Dyn Mod System?

