# **Emerging Trends in Concrete Construction**

Presented by: Kenneth Justice, P.E., LEED® AP NECSA Promotion Director for NJ/DE and William J. Lyons III, FACI Manager Engineered Sales USC Atlantic







Water Content

# Soil Cement/FDR (Full Depth

Reclamation)

- Now more economical
- Environmentally friendly
- Increased use in the Northeast and in New Jersey





2-lane road, 6-inch (150-mm) base



#### **6-Step Process**



1. Pulverize the old road or existing subgrade

# 2. Initial shaping and grading





www.necementshippers.com

#### **6-Step Process**



3. Spread the cement

4. Mixing water & cement into the aggregate-soil mixture





www.necementshippers.com

#### **6-Step Process**



# 6. Curing – water or asphalt primer





# Roller-Compacted Concrete Pavements





www.necementshippers.com

### Definition

"Roller-Compacted Concrete (RCC) is a no-slump concrete that is compacted by vibratory rollers."

- Zero slump (consistency of damp gravel)
- No forms
- No reinforcing steel
- No finishing
- Consolidated with vibratory rollers



#### **Concrete pavement placed in a different way!**



#### Why Use RCC?

- · Low cost
- Easy preparation
- High-volume production
- Minimal labor
- High strength and durability
- Proven performance



#### **Benefits of RCC**

- Economical
- High load carrying ability
- Eliminates rutting and spans weak subgrades
- Excellent freeze-thaw durability
- Simple, fast construction
- No forms or finishing
- Light surface reduces lighting requirements



# **Off-Highway Applications**

- Parking Lots
- Storage/Lay down areas
- Truck terminals and distribution centers
- Haul roads
- Military applications
   Tank hardstands
  - > Maintenance yards
- Intermodal shipping
- Airfield apron areas









www.necementshippers.com

### Streets and Highways

- Industrial access roads
- Residential streets
- Highway inlays
- Fast-track, high-volume intersections
- Shoulders and turn lanes



Industrial Drive Tennessee DOT







www.necementshippers.com

#### **Engineering Properties**

- Compressive strength
   > 4,000 to 10,000 psi
- Flexure strength > 500 to 1,000 psi >  $f_r = C(f'_c)^{1/2}$
- Modulus of Elasticity > 3,000,000 to 5,500,000 psi > E =  $C_{E}(f'_{c})^{1/2}$



Mixture Design Conventional concrete mixture procedures are not appropriate!

- Not air-entrained
- Retarders or water reducers can be used to increase working time
- Lower water content
- Lower paste content
- Larger fine aggregate content
- Nominal maximum size aggregate 3/4" or 5/8"



# Important!

- Dry enough to support a vibratory roller
- Wet enough to permit adequate distribution of paste





# **Aggregate Selection**

- > Highway base course, asphalt, or concrete aggregates can be used.
- > 3/4" or 5/8" NMSA
  - For smooth surface, lower segregation
- > Higher fine aggregate content than conventional concrete mixes
  - For adequate stability under vibratory roller
- > 2% to 8% passing #200 sieve
  - Provides paste to fill voids and maintain tight surface



#### **Basic Construction Sequence**

- Produced in a pug mill or central batch plant
- Transported by dump trucks
- Placed with an asphalt paver
- Compacted by vibratory and pneumatictired rollers
- Cured with water or curing compound



# **Continuous Pug Mill**

- High-volume applications
- Excellent mixing efficiency for dry materials
- 250 to 500+ tons/hr
- Mobile, erected on site
- Higher mobilization costs





#### **Central Concrete Batch Plant**

- Highly accurate proportioning
- Local availability
- Smaller output capacity
- Longer mix times than conventional concrete
- Frequent cleaning
- Dedicated production





#### Dry Concrete Batch Plant

- Highest local availability
- 2-step process
  - > Feed into transit mixers
  - > Discharge into dumps
- Very slow production
- Frequent cleaning
- Segregation
- Least desirable method





# Transporting

- Rear dump trucks normally used
- Minimize transport time
- Covers required for long hauls, or hot/windy conditions





#### **Preparation for Placement**

- Simple preparation: no dowels, reinforcing, or forms
- RCC ideal for wide-open, unimpeded placement runs
- Block off fixtures
- Ensure subbase is smooth and at specified grades
- Set up stringlines
- Moisten subbase prior to RCC placement



# Placing

- Layer thickness
  - > 4 inches minimum
  - > 8 inches maximum
  - > 10 inches with some heavy-duty pavers
- Timing sequence
  - > Adjacent lanes placed within 60 minutes for "fresh joint"
  - Multiple lifts placed within 60 minutes for proper bonding
- Production should match paver capacity
  - > Continuous forward motion for best smoothness



# **Placing Equipment**

- High density ABG pavers
  - Vibrating screed
  - > Dual tamping bars
  - High initial density
     (90% to 95%)
  - Reduces subsequent compaction
  - > High-volume placement (1000 - 2000 tons/shift)
  - Designed for harsh mixes
  - Smoothest RCC surface





### Placing Equipment

- Conventional Asphalt Pavers
  - Provides some initial density (80%-85%)
  - Relatively smooth surface
  - May require modification
  - Increased cleaning and maintenance









# Compaction

- Proper compaction is critical for strength and durability
- Compact to 98% of Modified Proctor
- Vibratory roller
- Non-vibratory steel wheel roller
- Rubber-tire roller







# Curing

- Extremely important; ensures surface durability
- Low moisture in RCC
- Three methods:
   Moist cure
  - > Concrete curing compound
  - > Asphalt emulsion



#### Saw-Cut Joints vs. Natural Cracks



- More aesthetically pleasing
- Soff-Cut very effective, shortly following placement
- Need to saw within 12 hours to avoid uncontrolled cracking

- 30 to 80 ft spacing
  Often first cracks appear within 24 hours
- Narrow crack widths
- Seal if > 1/8 inch
- Best load transfer
- Minimal raveling





# Surfacing

- Paver-placed RCC needs no surface for durability
- Adequate for low-speed traffic
- High-density ABG pavers can provide smoothness for medium-speed traffic
- Thin asphalt surface (1-1/2 to 3 inches)
  - > Improves surface for high-speed traffic
  - > Placed immediately or any time thereafter







#### **Surface Smoothness**

- Unsurfaced RCC can be built for low to medium speed traffic
- High density paver achieves good ride quality
- Joints/cracks do not affect ride quality appreciably





# Questions???

#### **Concrete home survives Hurricane Ike at Gilchrist, Texas**

September 2008





www.necementshippers.com