

Overview of Fast Setting Concrete Repair

Presented by: Angel Correa FHWA Resource Center

84th Annual NESMEA Conference" Atlantic City, NJ October 7-8, 2008

Goals

- Identify new techniques for expediting concrete pavement repairs
- Explain purpose and techniques for rapid-repairs
- Describe applications of rapid-repairs techniques

Presentation Outline

- ➤ Rapid-repairs of PCCP....
 - Why rapid-repairs?
- What qualifies a job as fast setting concrete?
- Planning for rapid repairs
 - What the owner/agency can (should) do
 - What the contractor can (should) do
- > Other considerations
 - Nighttime paving, equipment, construction, materials...
- > Summary

Why rapid repairs?

What is a rapid repair?

- A series of techniques that decrease concrete pavement construction or repair time
- Rapid pavement repair is not difficult, nor does it have to be expensive

Why rapid repairs?

- Traveling public does not like orange barrels
- Get in, do it quickly (and correctly), get out, and stay out

Why rapid repairs?

- > Improve safety
- Expedite construction
- Ease traffic congestion
- > Ease traffic confusion

What Qualifies a Job for fast setting concrete?

- > Short construction window
 - High user delay costs
 - Night-time closures
 - Weekend closures
- Revenue loss if facility closed
- Need to open to traffic quickly
 - Concrete paving is critical path in schedule

Early Opening!

Planning for fast setting concrete

Owner:

- > Access for local traffic
- Local business disruption
- ➤ Utility work & coordination
- Construction equipment access
- Pavement edge drop-off requirements
- Accelerated damage to detour routes
- > Aggressive Public Relations Campaign

Planning & Specifications

- > Use partnering-based project management
- > Consider night construction
- > Use innovative equipment & materials
- > Consider more than one concrete mixture
- Provide multiple options for contractors (not step-by-step procedures)
- > Be flexible & allow for innovation
- > Use incentives and disincentives

Planning for fast setting concrete

Contractor:

- Construction phasing
- > Traffic control switches
- > Access to site for construction vehicles
- > Haul roads / access for concrete trucks
- Adequate width for paving equipment

Innovative Equipment

Minimum clearance pavers

Dowel bar inserters

Belt placers/spreaders

➤ Ultra-light saws

Utility coring machines

Material Considerations for Fast Setting Concrete

- Rapid strength gain
- >Long-term strength
- > Freeze-thaw durability
- Workability
- > Abrasion Resistance

Materials Possible Changes from Conventional

- >Try different cement types
 - Type I, or III
 - Special blended cements
- ➤ Use admixtures
- Optimize aggregate grading
- Keep water-cementitious ratio below 0.43

Mix Proportioning

- No specific proportions
- Most local materials acceptable
- Verify compatibility of components in lab

Typical Mix Components for fast setting project

Material	Туре	Quantity
Cement	Type I Type III	700-800 lb/yd ³ 600-800 lb/yd ³
Fly ash Aggregate Ratio Water-Cementitious Ratio Air-entraining Admixture Water-reducing Admixture	Class C or F Coarse/Fine ASTM C260 ASTM C494	0%-20% cement wt. 1:1 to 1.5:1 0.37-0.43 As necessary As necessary

Mix Proportions from Actual Projects

Material	Runway Ext. Dane Co. Wisconsin	US-71 BOL Storm Lake Iowa	US-81 Recon. Menominee Nebraska	Interchange I-90 & SR-832 Pennsylvania
Cement Type	Type III	Type III	Type III	Type I
Cement (lb/yd3)	660	640	612	750
Fly ash (lb/yd³)	0	42 (Class C)	0	0
Coarse Agg. (lb/yd³)	1180	1695	1241	1724
Fine Agg. (lb/yd³)	883	1129	900	983
W/C Ratio	0.455	0.45	0.423	0.37
AE Admixture	Yes	Yes	Yes	Yes
Other Admixtures	WR-Type A	WR-Type A	WR-Type F	SRA-Type D
				WR-Type F

Supplementary Cementing Materials

- > Tend to slow initial set!
- > Act as fine particle fillers for workability
 - Fly ash
 - GGBFS

Chemical Admixtures

- > Air-entraining
- Water-reducing
 - Improves workability at constant water content
 - Reduces necessary water by dispersing cement particles
- Accelerating
 - Increases reaction rate of C₃A

Aggregate for Fast Setting Mixes

- > ASTM C 33 generally acceptable
- Can optimize mix properties
 - Well-graded
 - Particle shape
- Optimizing may require additional stockpile or additional bin at concrete plant

Mix Water for Fast Setting Mixes

- > Typical requirements apply
- > Heating to 140-150°F (60-66°C)
 - Raise plastic concrete temperature
 - Cool weather construction
 - Small projects like intersections
- ➤ Heating only lasts short time without insulation

Placement Considerations for Fast Setting Concrete

- > All methods proven successful
 - Hand forming
 - Form-riding equipment
 - Slipform equipment
- Well-planned staging/sequencing
- > Avoid long/congested haul routes
- Do not modify smoothness specifications

Curing & Temperature Considerations for Fast Setting Concrete

- ➤ Maintain moisture condition
- Maintain temperature condition
- > Control ambient condition
 - Air temperature
 - Wind
 - Relative humidity
 - Sunshine
 - Subbase

Curing Compound for Fast Setting Concrete

- >ASTM C 309 acceptable
- ➤ Most conditions
 - White-pigmented Type 2/Class A
- > Harsh or arid conditions
 - Resin-based Type 2/Class B

Jointing & Sealing - Possible Changes for Fast Setting Concrete

- Use green sawing with ultra-light saws
- ➤ Use dry-sawing blades
- Use step-cut blades for single pass joint sawing
- ➤ Use a sealant that is unaffected by moisture or reservoir cleanliness

Joint Sawing for Fast Setting Concrete

- > Time sequence is different
- ➤ Be aware of factors that influence the sawing window
 - Weather
 - Concrete strength development
 - Concrete temperature
 - Aggregate hardness & shape
 - Subbase type
 - Edge restraint
- Determine sawing time using HIPERPAV

HIPERPAV Stress and Strength Development

Scenario #1
Cracking should not occur

Scenario #2
Cracking may occur

Strength Testing Possible Changes for Fast Setting Concrete

- > Use non-destructive methods
 - Supplement cylinders and beams
 - Replace cylinders and beams
- Use Concrete maturity
 - Monitor concrete temperature and strength
- Use time criterion with known mixes

Maturity Testing

- ASTM C 1074
- Internal temperature of concrete relates directly to concrete strength
- Develop correlation curve in lab
- Precision to baseline cylinders:
 ±5%

Traffic Opening Possible Changes for Fast Setting Concrete

- Revise criteria from time to strength
- Channel early loads away from slab edges
- > Restrict early use to automobile traffic
- ➤ Use maturity meters!!!

Opening Recommendations for Span Saws

Slab Foundation Thickness Support, k in psi/in		Flexural Strength to Support psi	
6	100	215	
	200	190	
	500	115	
6.5	100	190	
	200	160	
	500	145	
7	100	145	
	200	145	
	500	145	

- No fatigue in pavements >7 in thick
- 145 psi practical minimum for sawing

Opening Recommendations for Construction Trucks

Slab	Foundation Support, k psi/in	Flexural Str. to Support Axle Loads, psi		
Thickness in		10 loads	50 loads	
	100	400	460	
6	200	360	390	
	500	300	300	
	100	360	390	
6.5	200	300	350	
	500	300	300	
	100	300	330	
7	200	300	300	
	500	300	300	

- 145 psi practical minimum for sawing
- 300 psi minimum for truck loads
- Assume wheels 2 ft from free edge

Opening Recommendations for Public Traffic

- Many different vehicles
- Estimate ESAL's until reach design strength
- ► Allow 1% fatigue consumption
- ➤ Min. allowable opening strength 300 psi flexural

Opening Recommendations for Public Traffic

Slab	Foundation Support, k psi/in	Flexural Str. to Support ESALs, psi			
Thickness in		100	1000	5000	
6	100	500	560	620	
	200	400	460	520	
	500	330	380	430	
7	100	380	430	480	
	200	300	360	400	
	500	300	300	320	
8	100	300	330	380	
	200	300	300	330	
	500	300	300	300	

Summary

- > Fast Setting Concrete works for all pavements
- Start by considering fast setting in planning
- > Use specifications that give contractors options
- > Consider more than one mix
- Use innovative equipment
- Use non-destructive testing

Summary of Benefits for Fast Setting Concrete

- > Expedites construction operations
- > Reduces work zone congestion
- Allows residents and businesses access to pavement quicker than normal
- Useful for all traffic conditions and climates

Thank you!