

Precision of the Dynamic Test (AASHTO T62-07) for Hot Mix Asphalt

Thomas Bennert Center for Advanced Infrastructure and Transportation (CAIT) Rutgers University

Acknowledgements

- Stacy Williams of University of Arkansas
- Funding provided by NJDOT Research Bureau
- Eileen Sheehy and Robert Sauber of NJDOT Materials Bureau and Robert Blight of NJDOT Pavement Technology

Background

- E* used as the primary input parameter for the MEPDG
 - E* used to calculate stress and strain in the HMA
 - Stress and strain used in distress predictions
- E* testing also being used to evaluate performance of different HMA materials and additives

Higher RAP, WMA, asphalt rubber, etc.

Asphalt Mix Asphalt Binder Asphalt General Dynamic Modulus Table Number of temperatures: 5 Number of frequencies: 4 1 Temperature (°F) 0.1 1 10 25 10 1807698 2214499 2509367 2598653 340 789187 1227495 1654832 1734659 32039 340246 781182 957396 324039 324039 330 16160 32519 68538 105721	et 1 💌 🗚	Asphalt materia ayer thicknes	altype: As s (in):	phalt concrete	
Mixture E* (psi) 0.1 1 0 25 10 1807698 2214499 2509367 2598653 40 789187 1227495 1654832 1734659 70 226939 440246 781182 957396 100 49488 107164 232124 324039 130 16160 32519 68538 105721	Asphalt Mix 📄 Asph Dynamic Modulus Tabl Number of temperatures: 🗍	alt Binder 🗖 e 5 🔅	Asphalt Gen Numb fregue	eral	
0.1 1 10 25 10 1807698 2214499 2509367 2598853 40 789187 1227495 1654832 1734659 70 226939 440246 781182 957396 100 49488 107164 232124 324039 130 16160 32519 68538 105721			10		
10 1807698 2214499 2509367 2598853 40 789187 1227495 1654832 1734659 70 226939 440246 781182 957396 100 49488 107164 232124 324039 130 16160 32519 68538 105721	Temperature (°F)	-	Mixtu	re E* (psi)	
40 789187 122/495 1654832 1/34659 70 226939 440246 781182 957396 100 49488 107164 232124 324039 130 16160 32519 68538 105721	Temperature (%)	0.1	Mixtu 1	re E* (psi) 10	25
70 226939 440246 781182 95/396 100 49488 107164 232124 324039 130 16160 32519 68538 105721	Temperature (%)	0.1	Mixtu 1 2214499	re E* (psi) 10 2509367	25 2598853
100 49488 107164 232124 324039 130 16160 32519 68538 105721	Temperature (%) 10 40	0.1 1807698 789187	Mixtu 1 2214499 1227495	re E* (psi) 10 2509367 1654832 704400	25 2598853 1734659
130 16160 32519 66538 105721	Temperature (F) 10 40 70	0.1 1807698 789187 226939	Mixtu 1 2214499 1227495 440246	re E* (psi) 10 2509367 1654832 781182	25 2598853 1734659 957396
	Temperature (%) 10 40 70 100 130	0.1 1807698 789187 226939 49488 16160	Mixtu 1 2214499 1227495 440246 107164 32519	re E ^A (psi) 10 2509367 1654832 781182 232124 68538	25 2598853 1734659 957396 324039 105721

Overview of Study

Current test procedure, AASHTO TP62-07

- No precision statement associated
- Some recommendations for quality of data (load standard error; deformation standard error, load drift)
- Round Robin study initiated to evaluate expected precision of AASHTO TP62-07
 - Data also used in MEPDG to determine how precision may affect outputs

Precision Evaluation

Conducted Round Robin testing with 7 labs

- 2 different mixes (NJDOT 9.5H64 and 25H64) 3 samples each
- Loose mix prepared at Rutgers, boxed in wax-lined boxes, sealed and shipped to labs
- Labs asked to condition (AASHTO R30) and compact, core/cut, and test according to AASHTO TP62-07

 Data evaluated under ASTM E691, Standard Practice for Conducting an Inter-Iaboratory Study to Determine the Precision of a Test Method

Round Robin Partners

- Thomas Bennert (Rutgers U.)¹
- Ray Bonaquist (AAT)¹
- Allen Cooley (Burns, Cooley, Dennis)¹
- Nam Tran/Randy West (NCAT)¹
- Arif Chowdhury (TTI)¹
- Rebecca McDaniel (Purdue/NCSC)²
- Walaa Mogawer (U of Mass, Dartmouth)²

¹ – Current AMRL Accredited ² – Were recently AMRL Accredited

Test Equipment Info

Lab No	Gyratory Compactor Type	E* Test Equipment	# of LVDT's	Frictionless End Treatments
# 1	IPC Servopac	UTM-25 (T)	3	Greased Latex
# 2	Pine	UTM-25 (T)	3	Greased Latex
# 3	Pine AFG1A	IPC SPT (B)	3	Teflon
# 4	Pine AFG1A	IPC SPT (B)	3	Greased Latex
# 5	Interlaken	Interlaken (T)	2	Teflon
# 6	Interlaken	IPC SPT (B)	3	Teflon
# 7	Pine AFGC125X	Interlaken (T)	3	Greased Latex

RUTGERS- (T) = Top Loading Device; (B) = Bottom Loading Device

E* Test Procotol

Dynamic Modulus Test

AASHTO TP 62-07

Temperature			
°C	°F		
-10	14		
4.4	40		
21.1	70		
37.8	100		
54.4	130		

E* Test Protocol – Generated Data

Dynamic Modulus Test

AASHTO TP 62-07

Test	Loading	9.5mm Dynamic Modulus (psi)			
Temp (F)	Freq (Hz)	Average	Std Dev	Range	
	25	4,275,759	799,575	1,873,273	
	10	4,021,098	715,261	1,577,246	
145	5	3,835,141	686,879	1,479,671	
146	1	3,391,218	648,642	1,489,884	
	0.5	3,175,624	620,801	1,464,441	
	0.1	2,615,162	567,928	1,383,142	
	25	2,622,030	618,924	1,677,729	
	10	2,375,032	544,161	1,418,881	
40E	5	2,174,073	498,964	1,310,321	
40F	1	1,758,664	424,615	1,043,268	
	0.5	1,529,755	347,693	936,621	
	0.1	1,155,031	289,807	700,798	
	25	1,317,087	309,417	845,314	
	10	1,064,023	203,803	599,934	
705	5	895,096	170,835	500,343	
701	1	598,537	160,008	407,117	
	0.5	461,619	95,460	270,412	
	0.1	283,905	89,692	225,845	
	25	397,912	68,164	183,186	
	10	287,878	85,329	277,302	
100E	5	216,223	68,596	220,595	
TUUF	1	121,013	69,679	210,539	
	0.5	81,645	31,134	79,449	
	0.1	50,982	27,000	62,760	
	25	112,499	33,550	91,132	
	10	78,592	29,240	75,075	
1205	5	54,657	26,878	67,195	
IJUE	1	33,796	20,463	43,484	
	0.5	25,035	17,055	42,486	
	0.1	21,015	15,838	35,557	

Test	Loading	25mm Dynamic Modulus (psi)				
Temp (F)	Freq (Hz)	Average	Std Dev	Range		
	25	5,018,577	648,706	1,404,617		
	10	4,768,662	599,029	1,392,022		
145	5	4,578,915	597,033	1,412,745		
146	1	4,100,163	605,187	1,466,550		
	0.5	3,865,131	616,883	1,505,115		
	0.1	3,295,093	632,159	1,544,038		
	25	3,150,148	605,038	1,690,377		
	10	2,907,729	540,402	1,556,939		
40E	5	2,692,854	501,407	1,435,836		
406	1	2,238,969	406,768	1,205,143		
	0.5	1,994,296	377,691	1,059,310		
	0.1	1,562,608	275,358	786,947		
	25	1,692,328	338,398	966,260		
70F	10	1,439,046	268,147	821,897		
	5	1,242,623	244,346	726,743		
701	1	875,896	213,266	576,554		
	0.5	705,012	175,695	508,386		
	0.1	456,864	140,788	389,435		
	25	595,103	69,602	184,669		
	10	446,599	97,680	293,884		
100F	5	348,169	83,769	251,728		
1001	1	204,684	92,369	271,356		
	0.5	144,981	38,662	102,248		
	0.1	88,120	40,531	110,136		
	25	184,532	46,894	138,585		
	10	131,452	44,284	141,708		
130E	5	94,459	40,364	125,354		
1301	1	56,835	31,341	87,017		
	0.5	41,029	22,169	58,591		
	0.1	33,404	19,816	47,480		

E* Data – 9.5mm, 70°F

E* Data – 9.5mm, 130°F

Phase Angle – 9.5mm, 70°F

Phase Angle – 9.5mm, 130°F

ASTM E691

Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

Variance (Repeatability)

- For each combination of temperature and frequency, the variance components associated with E* and phase angle were estimated
- In general, the experimental variance (i.e., repeatability) was relatively low
 - the largest proportion of error was attributed to the laboratory error, or reproducibility term
- Material variability was also larger than the pure experimental error

 Means that the intentional variability in the data created through the use of different materials was readily
 Control of the dynamic modulus test

Analysis of Variance (ANOVA)

- Analysis of variance (ANOVA) was used to investigate the effect of the various equipment types
- SPT and non-SPT devices provided statistically significant differences in measures of both E* and phase angle
 - Greatest precision was achieved at intermediate test temperatures, with the SPT devices

exhibiting much less variability between laboratories than the non-SPT devices

Initial Precision Statement of AASHTO TP62-07

Analysis Condition	Precision Mode	Parameter	1S%	D2S%
	Single Operator	Dynamic Modulus	13.03	36.47
All Test Devices, All	Precision	Phase Angle	6.76	18.93
Temperatures	Multi-Laboratory	Dynamic Modulus	26.89	75.3
	Precision	Phase Angle	19.46	54.49

- 1S% = Coefficient of Variation

- D2S% = Acceptable Range of 2 Results

Influence on MEPDG Distress Predictions

- Used Level 1 Inputs for E* and asphalt binder data (PG64-22)
- Same pavement structure
 (3" of 9.5mm; 5" of 25mm; 8" base)
- MEPDG Traffic Default Conditions with 2-Way AADTT = 10,000
- Newark, NJ Climatic Conditions

MEPDG Outputs – HMA Rutting

MEPDG Outputs – Alligator Cracking

<u>MEPDG Outputs – Longitudinal</u> <u>Cracking</u>

Improving Dynamic Modulus Precision

Increasing Dynamic Modulus Precision

- Greatest precision at intermediate temperatures (40, 70, and 100°F)
- Precision of AASHTO TP62-07 could be improved by eliminating 14 and 130°F
 - Current SPT's and other devices can not test at 14°F
 - Others have already recommended eliminating high and low temperatures

- Bonaquist and Christensen (TRR #1929, 2005)
- Dongré (FHWA Mix ETG, 2007)

el: 1 💌	Aspha Layer	alt material thickness	type: Aspł (in): 3	alt concrete		
Asphalt Mix	Asphalt Bi	nder 🛛 🗖	Asphalt Genera	1]		
Number of temperature	s Table	<u>·</u>	Number frequence	of 6	÷	
Tamparatur	- (95)			Mixture	E* (psi)	
remperature	0.1	1.11	0.5	1	5	
30	16	57353.246	2064769.725	2222866.701	2538346.505	
40	55	3805.8473	838791.0135	971246.967	1309983.216	
70	10	6510.8309	198564.2739	247413.0723	421872.0306	
100	21	965.27991	36457.47687	45404.1459	93808.40283	
130	16	16339.25589 18078.9867 20411.19774 32113.58877 3				
The user s measuren temperatu 14 °F. It is absolu minimum as well as insure tha	should sel nent to be ure recom utely man n and max test temp ut an accu	ect the m within a mended i datory th imum ten eratures k rate E* sig	inimum temp range of 10 to in AASHTO Do at the user ad nperatures, petween the e moidal mode	erature for th 20 °F. The m esignation: TF here to the re- xtreme values I,	e E* inimum test 0 62-03 (2005) commended ; in order to	

Increasing Dynamic Modulus Precision

NCHRP Report 614

- Overview of E* testing with SPT (AMPT) devices
- Test method and stiffness master curve development
- Eliminates 14°F and 130°F test temperatures

PG 58-XX	and softer	PG 64-XX & PG 70-XX		PG 76 –XX and stiffer	
Temperature	Loading	Temperature	Loading	Temperature	Loading
°C	Frequencies	°C	Frequencies	°C	Frequencies
	Hz		Hz		Hz
4	10, 1, 0.1	4	10, 1, 0.1	4	10, 1, 0.1
20	10, 1, 0.1	20	10, 1, 0.1	20	10, 1, 0.1
35	10, 1, 0.1,	40	10, 1, 0.1,	45	10, 1, 0.1,
	and 0.01		and 0.01		and 0.01

<u>Master Stiffness Curve – All 5</u> <u>Temperatures</u>

<u>Master Stiffness Curve – 4 Test</u> <u>Temperatures (No 14°F)</u>

Precision Statement

Analysis Condition	Precision Mode	Parameter	1S%	D2S%
	Single Operator	Dynamic Modulus	13.03	36.47
All Test Devices, All Temperatures	Precision	Phase Angle	6.76	18.93
	Multi-Laboratory	Dynamic Modulus	26.89	75.3
	Precision	Phase Angle	19.46	54.49
All Test Devices	Single Operator	Dynamic Modulus	12.24	34.26
Eliminating High and	Precision	Phase Angle	5.06	14.17
Low Temperatures	Multi-Laboratory	Dynamic Modulus	24.98	69.94
	Precision	Phase Angle	10.09	28.25
SPT Devices Only	Single Operator	Dynamic Modulus	10.87	30.44
Eliminating High and	Precision	Phase Angle	3.92	10.99
	Multi-Laboratory	Dynamic Modulus	22.05	61.74
Low Temperatures	Precision	Phase Angle	5.07	14.19
Non-SPT Devices Only	Single Operator	Dynamic Modulus	12.33	34.53
Eliminating High and	Precision	Phase Angle	5.6	15.69
	Multi-Laboratory	Dynamic Modulus	25.43	71.2
	Precision	Phase Angle	11.28	31.58

- 1S% = Coefficient of Variation

- D2S% = Acceptable Range of 2 Results

- Low Temperature = 14°F
- High Temperature = 130°F

RUTGERS

Conclusions

- E* widely used to characterize HMA mixtures
 - MEPDG, influence on additives, higher RAP contents
- Generated precision statement for AASHTO TP62-07 indicates issues with precision
 - For Single Operator:
 - Dynamic Modulus: 1S% = 13.03; D2S% = 36.47
 - Phase Angle: 1S% = 6.76; D2S% = 18.93
 - Multi-Laboratory:
 - Dynamic Modulus: 1S% = 26.89; D2S% = 75.3
 - Phase Angle: 1S% = 19.46; D2S% = 54.49

Conclusions - continued

- E* precision will have impact on MEPDG outputs
 - Pavement structure and climatic condition will dictate impact on distress magnitude
- Precision can be improved by eliminating high and low temperatures
 - Recommend following method in NCHRP Report 614
 - Low temp portion of stiffness master curve generated by Hirsch model
 - High temp portion of stiffness master curve generated by using 0.01 Hz
 - Master curve can be used to provide 14 and 130F E* for MEPDG
 - SPT (AMPT) already uses range of 75 to 125 micro-strains

84TH ANNUAL **MESMEA** CONFERENCE

Thank you for your time!

Thomas Bennert Center for Advanced Infrastructure and Transportation (CAIT) Rutgers University <u>bennert@eden.rutgers.edu</u> 732-445-5376

