Control of Cracking in Bridge Decks

JoAnn Browning, David Darwin Will Lindquist, Heather McLeod, Miriam Toledo, Jiqiu Yuan University of Kansas

NESMEA Conference October 10, 2006 Newark, Delaware

Research supported by:

- 15 State DOTs: Delaware, Kansas, Idaho, Indiana, Michigan, Minnesota, Mississippi, Missouri, Montana, New Hampshire, North Dakota, Oklahoma, South Dakota, Texas, Wyoming
- FHWA
- Lead state Kansas

Outline

Background
Experiences
Laboratory work

Background

Project Scope

20 Low-Cracking High Performance Concrete (LC-HPC) Bridges

So far –

13 planned for Kansas
2 planned for South Dakota
1 planned for Missouri
1 planned for Minnesota

Selection of Bridges

Composite steel girder bridges Full-depth slabs Removable forms Matching bridges to serve as a control where possible

Background

Why we use LC-HPC

Specifications for LC-HPC decks

76 mm (3 in.)

Off cracks

76 mm (3 in.)

On cracks

Crack Surveys

Composite steel girder bridges 3 deck types Monolithic **Conventional Overlay** Silica Fume Overlay 3 studies – over 11 years 76 bridges 160 individual concrete placements 139 surveys

Bridge Deck Type

Monolithic Conventional Overlay Silica Fume Overlay

Overlay decks evaluated based on the properties of the subdeck

Material Effects

Concrete Mixture Proportions Water content Cement content Volume of cement paste Slump **Compressive Strength** Air content

Water content

Cement content

Volume of cement paste

Slump

Compressive Strength

Air content

Site Conditions - Temperature

Date of Construction

Conventional Overlays

Silica Fume Overlays

Control of Early Evaporation

Silica Fume Overlays

Overall Approach

Low cement & water contents Low slump High strength is not always good Low evaporation rate **Construction methods and materials** matter More early cracking means more total cracking

LC-HPC

- 1 inch Max Size Aggregate
- Optimized Aggregate Gradation
- Cement Content < 535 lb/yd³
- Air Content of 8 ±1%
- Max w/c ratio of 0.42
- Improved curing
- Controlled temperature

Thermal Cracking Rule of Thumb: Cracking will result when the temperature of the concrete deck exceeds the temperature of the girders by more than 20° C (36° F).

Thermal Cracking

PennDOT¹ 15° C (27° F)

KDOT 14° C (25° F)

1 Pennsylvania Department of Transportation, "Prevention of Cracks in Concrete Bridge Decks – Summary Report," Report No. 89-01, March 1996.

Consolidation Requirements

Vertically mounted internal gang vibrators

Finishing

Machine Fogging

Machine Fogging

Supplemented by Hand Fogging

Early Wet Burlap Cure

Curing

14 days wet cure with burlap, soaker hoses, and plastic
Followed by curing compound to slow the rate of evaporation

Qualification Slab

To demonstrate implementation of the specialized process and address problems before bridge deck casting. • Process • Contractor

- Ready Mix Plant
- Inspectors

NO SUPRISES

Selection of Contractors

Prequalified Multiple bridge contracts (to gain from experience)

Experiences

Kansas Bridges

Unless specifically noted, all control bridges are in the same county as LC-HPC bridge.

Kansas Bridges - Timeline

		20	004	ŀ	2005												2006										2007														
Bridge Groups	S	0	Ν	D	J	F	-	М	А	М	J	J	А	S	0	Ν	D	J	F	Μ	А	Μ	J	J	А	S	0	Ν	D	J	F	М	А	М	J	J	А	S	0	Ν	D
1																																									
2																																									
1-2control																																									
3																																									
3 control																																									
4																																									
4control																																									
5																																									
5control																																									
6																																									
6control																																									
7																																									
7control																																									
8*																																									
8-10control*																																									
9																																									
9control																																									
10*																																									
11																																									
11control																																									
12																																									
12control																																									
13																																									
13control																																									

LET Date Pre-Construction Qualification Slab Cast Deck 1st Crack Survey

Pre-Construction Meeting Qualification Slab

Prestressed-Girder Bridge

Construction experiences

Qualification slabs

- Contractor learned:
 - Could pump mix
 - Need two bridges to place burlap, pre-fold
 - Fogging could not be used as finishing aid (especially in front of roller)
 - Proper use of gang vibrators

Qualification Slabs 1 and 2 – Fall 2005, Spring 2006 - Kansas City Area

Burlap placement within 10 min and 10 ft of strike off

Qualification Slab 7 – June 8, 2006 – Topeka, KS

 KsDOT Project Manager: "This proves the value of the trial slab. You can see how much the contractor learned from the beginning to the end of the slab."

Bridge Placements

- Temperature controlled with ice, place at night in mid-summer
- Pumpable even with 1.5-in. slump
- Finishing delayed at end abutments
- Bullfloating worked well, cannot use fogging as finishing aid
- Perfect art of placing burlap, keeping wet
- Cure barriers same as deck
- Careful of cold-weather curing

Bridge Placements

Bridge superintendent observed that he preferred working with optimized concrete with cement content of 540 lb/yd³ to traditional mix with cement content of 602 lb/yd³

Bridge 1: November 2005

Cores of deck show that finishing methods leave large coarse aggregate particles close to the upper surface of the deck

Bridge 7 June 24, 2006

Conclusions - Experiences

 Optimized concrete mixes with relatively low cement (paste) contents are very pumpable, placeable, and finishable

Temperature can be controlled using ice

 Techniques can be learned easily and workers can become proficient in a short period of time

 Bid prices are dropping as contractors become more familiar with the methods involved

Laboratory Work - Briefly

Average Free Shrinkage (Drying Only). 535 lb/yd³ Type I/II Cement

Average Free Shrinkage (Drying Only). 535 lb/yd³ Type I/II Cement w/cm = 0.42, 23.26% paste

Average Free Shrinkage (Drying Only). *w/cm* = 0.42, 23.26% paste

Average Free Shrinkage (Drying Only). *w/cm* = 0.42, 23.26% paste

Background

Experiences

Laboratory Work - in brief

Questions?

JoAnn Browning, Ph.D., P.E. Associate Professor

Dept. of Civil, Environmental & Architectural Engineering
2142 Learned Hall
Lawrence, Kansas, 66045-7609
(785) 864-3723 Fax: (785) 864-5631

joann@ku.edu

David Darwin, Ph.D., P.E.

Deane E. Ackers Distinguished Professor Director, Structural Engineering & Materials Laboratory

Dept. of Civil, Environmental & Architectural Engineering
2142 Learned Hall
Lawrence, Kansas, 66045-7609
(785) 864-3827 Fax: (785) 864-5631

daved@ku.edu

Will D Lindquist

Graduate Research Assistant

Dept. of Civil, Environmental & Architectural Engineering 1177 Learned Hall Lawrence, Kansas, 66045-7609 (785) 864-3016 Fax: (785) 864-5631

WLindq10@ku.edu

Heather A. K. McLeod, P.E.

Graduate Research Assistant

Dept. of Civil, Environmental & Architectural Engineering 2142 Learned Hall Lawrence, Kansas, 66045-7609 (785) 864-3853 Fax: (785) 864-5631

hmcleod@ku.edu

Costs

 Qualification Slabs 1 & 2 ■ \$4205/yd³ Bridges 1 & 2 ■ \$1741 & \$1698/yd³ Control Bridge 1 & 2 \$770/yd³

Costs

◆ Qualification Slabs 3 – 6 ■ \$995-\$1154/yd³ Bridges 3 – 6 ■ \$655-\$751/yd³ Control Bridges 3 – 6 ■ \$608-\$656/yd³

Costs

 Qualification Slab 7 ■ \$573/yd³ Bridge 7 ■ \$623/yd³ Control Bridge 7 \$725/yd³

Costs

 Qualification Slab 8-10 ■ \$906-956/yd³ Bridge 8-10 ■ \$569-774/yd³ Control Bridge 8-10 \$371/yd³

Costs

 Qualification Slab 12 ■ \$1070/yd³ Bridge 12 \$1275/yd³ Control Bridge 12 \$401/yd³

Average Free Shrinkage (Drying Only). w/cm = 0.42, 23.26% paste

Silica Fume

Class F Fly Ash

Ground Granulated Blast Furnace Slag

Ground Granulated Blast Furnace Slag

GGBFS, SF and SRA

Work in Progress

Ternary Mixtures with Reduced Paste Content

- CF 273 kg/m³ (460 lb/yd³)
- 60% 80% GGBFS
- 6% Silica Fume
- Aggregate type
- Permeability testing of mineral admixture batches
- Scaling tests for slag mixes