

Recycling Asphalt Pavements:

Past, Present and Future

Jeffrey Melton, Outreach Director Recycled Materials Resource Center University of New Hampshire

Recycling Asphalt Pavements

- Presentation will provide brief overview of the Recycled Materials Resource Center
- Where have we been, where are we now and where are we going?
- Present a life-cycle costing and impact assessment tool developed specifically for highways

> Asphalt paving example

RMRC Overview

- The Recycled Materials Resource Center is a National Center in Partnership with FHWA
- Established in TEA-21 in 1998

MISSION

To reduce barriers to the appropriate use of recycled materials in the highway environment

- ➢ Research
- ➢ Outreach

www.rmrc.unh.edu

RMRC RAP-Asphalt Projects

- Project 9 Properties of Asphalt Mixtures Containing RAP
- Project 15 Determination of N_{design} for CIR Mixture Design Using the SGC
- Project 16 Laboratory Foamed Asphalt Producing Plant
- Project 17 Development of a Rational and Practical Mix Design System for Full Depth Reclamation (FDR)

RMRC RAP-Asphalt Projects Cont.

- Project 22 Overcoming the Barriers to Asphalt Shingle Recycling (Phase Three)
- Project 26 Determination of Structural Layer Coefficient for Roadway Recycling Using Foamed Asphalt
- Other projects in progress on RMRC website

RAP: Where have we been?

Asphalt Pavement Recycling

- Began as early as the 1900's
- Oil embargo increased recycling in the 1970's
- Began with hot mix
- Became the most recycled material in the United States

Categories of Recycling

- Hot In-place Recycling (HIP)
 - Surface recycling
 - > Remixing
 - > Repaving
- Cold Recycling
 - > Cold In-place Recycling (CIR)
 - > Cold Central Plant Recycling (CCPR)
- Full Depth Reclamation
 - > Pulverization
 - Mechanical stabilization
 - > Bituminous stabilization
 - Chemical stabilization

RAP: Where are we now?

Project 37 - RAP Mixtures and the Mechanistic-Empirical Pavement Design Guide

Principal Investigator: Dr. Jo Sias Daniel, UNH

Approach:

- RMRC Project 9 results showed RAP affects volumetrics, which offsets increased stiffness due to RAP binder in dynamic modulus measurements - effect on field performance not well defined
- AASHTO Design Guide predicts pavement performance, Level 3 uses binder properties – what are the appropriate binder properties to input for RAP mixtures?
- Perform Level 3 analysis using combinations of virgin & RAP binder properties – dovetails with NETC 04-4:Determining effective PG grade of RAP mixtures
- Products include recommendation on how to handle RAP mixtures within the framework of the M-E Pavement Design Guide

Project 41 - Determination of Moisture Damage (Stripping) Potential of HMA With Recycled Materials Using Accelerated Loading Equipment

Principal Investigator: Dr. Jo Sias Daniel, UNH

Approach:

- There is potential for stripping in recycled mixes (water in RAP, poor blending, etc.)
- Use Model Mobile Load Simulator (MMLS3) for APT of RAP mixtures
- Test control (no RAP), 2-3 RAP percentages & sources for field density, rut depth vs # load applications, ITS before & after wet loading
- Provide method of identifying recycled mixtures that are susceptible to moisture damage, applicable to materials other than RAP as well as a better method for simulation of field conditions

Recycled Materials Use Survey

RMRC is currently conducting a national survey of state use of recycled materials.

RAP: Where are we going?

Green Highways and Sustainability – "buzz words"

How can sustainability be applied to road construction?

- Roads can be constructed in a more sustainable manner
- Roads can be sustainable (materials can be recovered and reused/recycled)
- Tools are available to evaluate environmental burdens and trade-offs of various options
- Present a life-cycle costing and impact assessment tool developed specifically for highways
 - > Asphalt paving example

Pavement Life-cycle Assessment Tool for Environmental and Economic Effects (PaLATE)

Developed by Arpad Horvath (UC Berkeley) for the Recycled Materials Resource Center

www.rmrc.unh.edu

Questions that can be answered:

- For a particular roadway, which material is better environmentally, economically: e.g., recycled or virgin?
- Will changing the recycled material content in a particular pavement affect its environmental performance?
- Does sending demolished portions of a road to a processing plant or to a landfill make more environmental and economic sense?
- Which maintenance options will minimize environmental and economic effects? For example, should full depth reclamation be performed instead of more frequent, smaller maintenance procedures?

Factors that are considered:

- Design of the roadway
- Construction materials, material transportation distances and modes
- Technology choices e.g., on-site construction and maintenance equipment (e.g., asphalt paver), and off-site processing equipment (e.g., rock crusher)
- Life-cycle economic costs

		Material	Density [tons/cy]	New Asphalt Pavement	New Concrete Pavement	New Subbase & Embankment Construction	Transportation	
				Vol [cy]	Vol [cy]	Volume [cy]	One-way trans dist [mi]	Transp mode
	Materials	Virgin Aggregate	1.25	1123	0		100	
		Bitumen	0.84	50			50	
		Cement	1.27		0		0	
		Concrete Additives	0.84		0		0	
		RAP transportation	1.85	0	0		0	
		RCM transportation	1.88	0	0		0	
		Coal Fly Ash	2.2	0	0		0	
		Coal Bottom Ash	2	0	0		0	
		Blast Furnace Slag	1	0	0		0	
W C		Foundry Sand	1.5	0	0		0	
C 1		Recycled Tires/ Crumb Rubber	1.92	0	0		0	
		Glass Cullet	1.93	0	0		0	
		Water	0.84		0			
		Steel Reinforcing Bars	0.24		0			
		Total: Asphalt mix to site	1.23	1173			20	dump truck
		Total: Ready-mix concrete mix to site	2.03		0		0	mixing truck
	Waste mat	RAP from site to LF	1.85	0			0	
	to LF	RCM from site to LF	1.88		0		0	

W C

Equipment Data

<u>ACTIVITY</u>	Equipment	Brand/Model		Eng Cap	Productivity	Fuel Consumption	Fuel Type
Concrete	Slipform paver		1	106 hp	564 tons/h	19.7 l/h	diesel
Paving	Texture curing machine		1	70 hp	187 tons/h	20.2 l/h	diesel
A	Paver		4	196 hp	2,400 tons/h	49.1 l/h	diesel
Asphalt Paving	Pneumatic roller		1	100 hp	668 tons/h	26.1 l/h	diesel
Taving	Tandem roller		2	125 hp	285 tons/h	32.7 l/h	diesel

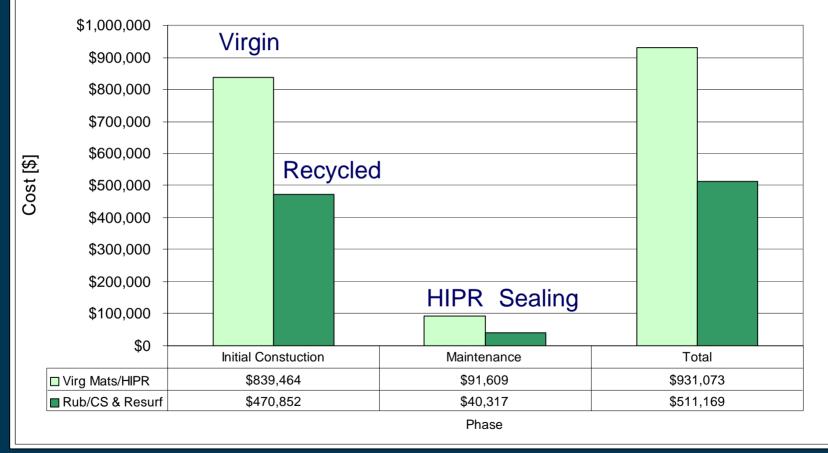
 Equipment type utilized for each activity: Concrete & asphalt paving, CIR & HIPR, FDR, rubblization, milling, concrete demolition, excavation, placing, compaction, tire & glass recycling, HMA production

Case Study

- NH DOT Construction Project in central NH
- Portion of project will utilize rubblization of an existing concrete roadway
- Investigate alternative materials and compare life-cycle costs and life cycle impacts (environmental effects)
- Data from DOT engineers put into PaLATE small investment in time

NH DOT Case Study

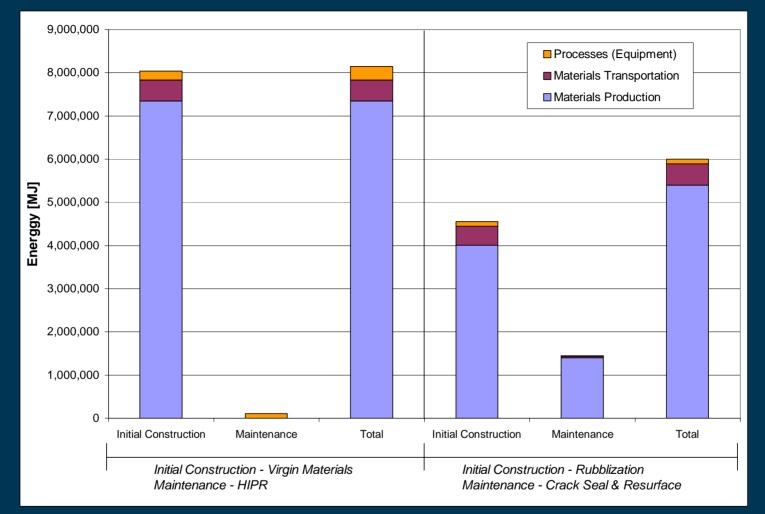
- Initial Construction
 - > Option 1
 - Mill off the existing Pavement
 - Rubblize (Recycle) Concrete / Cover with (Recycled) Pavement Millings
 - Widen with Virgin Materials
 - Pave with 3.5" on New Hot Mix Asphalt
 - > Option 2
 - Remove Concrete Slab and landfill
 - Construct 12" of Gravel & Crushed Gravel full width
 - Pave with 5.5" of New Hot Mix Asphalt


NH DOT Case Study (cont)

 Maintenance Option 1 Years 4 & 8: Crack Seal > Year 12: Resurface – 1" Wearing Course Years 16 & 20: Crack Seal > Year 24: Resurface – 1" Wearing Course Maintenance Option 2 > Year 1-11: nothing > Year 12: Hot In-Place Recycling (HIPR) > Year 13-23: nothing > Year 24: HIPR

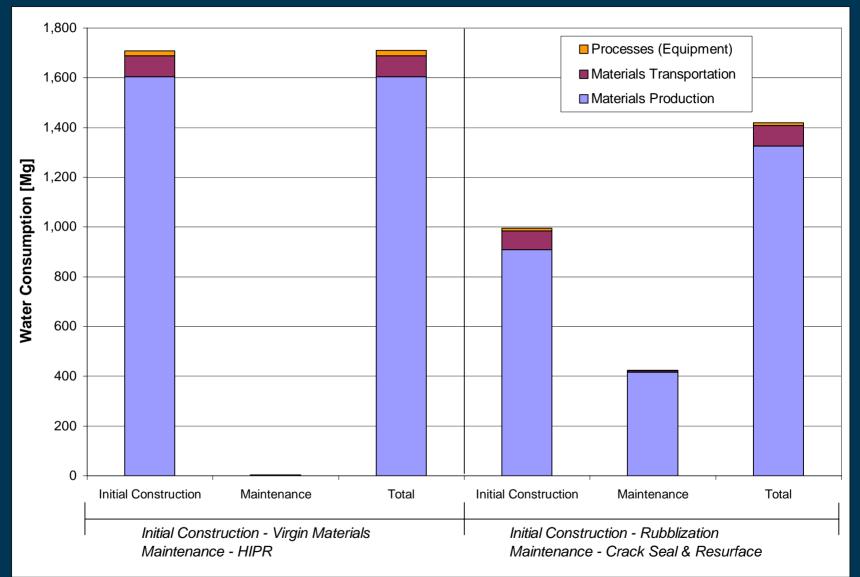
Case Study Results: Total Cost

Net Present Value Life-cycle Costs by Phase Initial Construction: Virgin Materials vs Rubblization Maintenance: HIPR vs Crack Sealing & Resurfacing

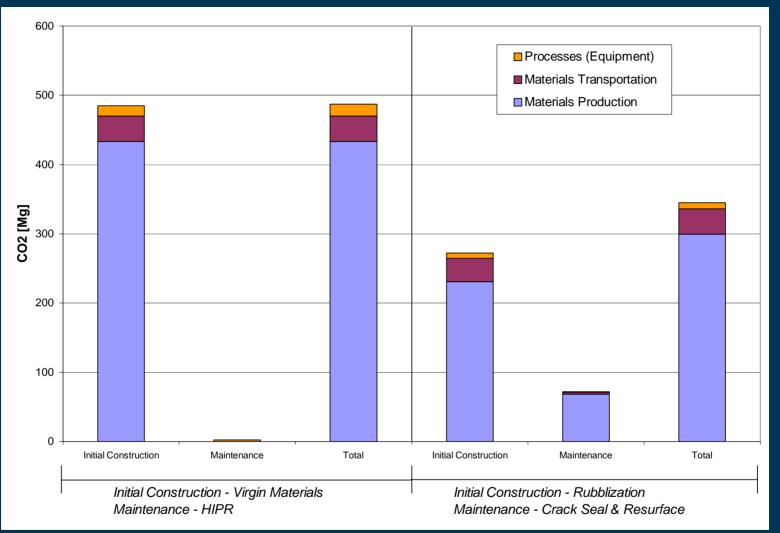


Initial Construction cost for rubblization is about half that of using virgin materials

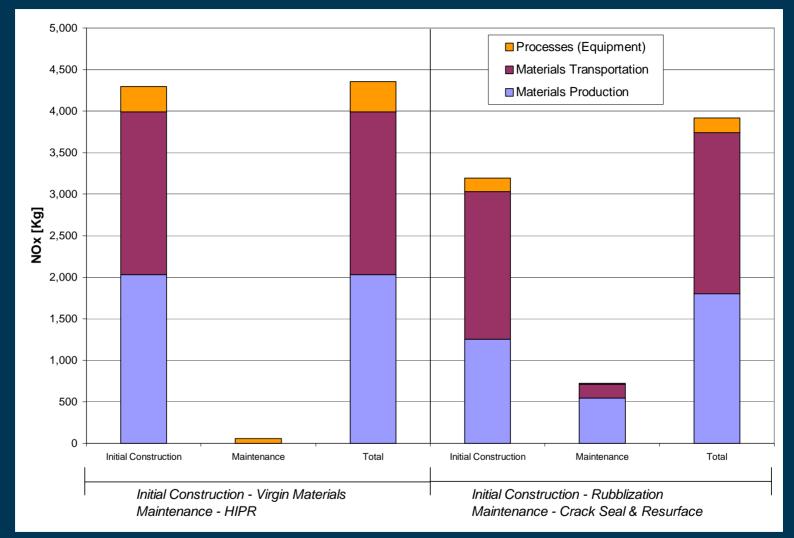
Maintenance cost of crack sealing & resurfacing is about half that of HIPR


Case Study Results: Energy Consumption (MJ)

Initial Construction: Recycling uses 3.5M MJ less energy than use of virgin materials (reduced materials production) Maintenance: HIPR uses 1.5M MJ less than crack sealing & resurfacing. HIPR - equipment processes Crack seal & resurfacing - materials production

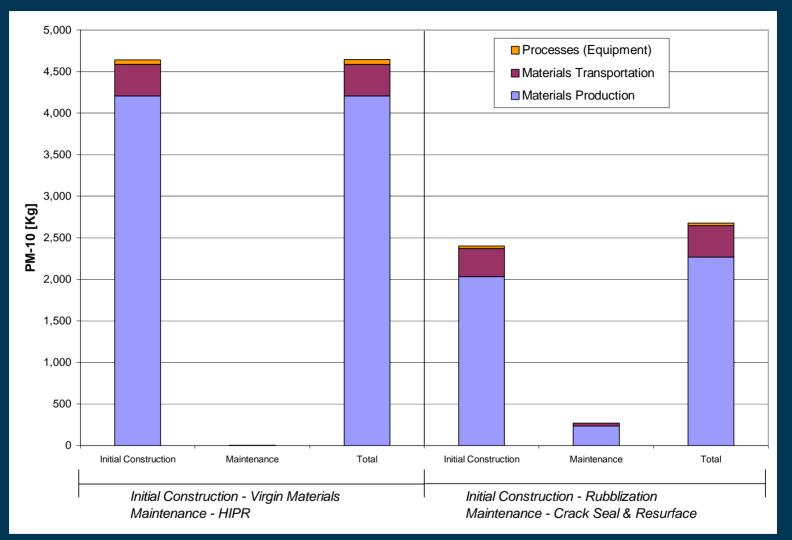

Case Study Results: Water Consumption (Mg)

Initial Construction: Rubblization uses 700 Mg less (reduced materials production) Maintenance: HIPR uses 400+ Mg less (reduced materials production)



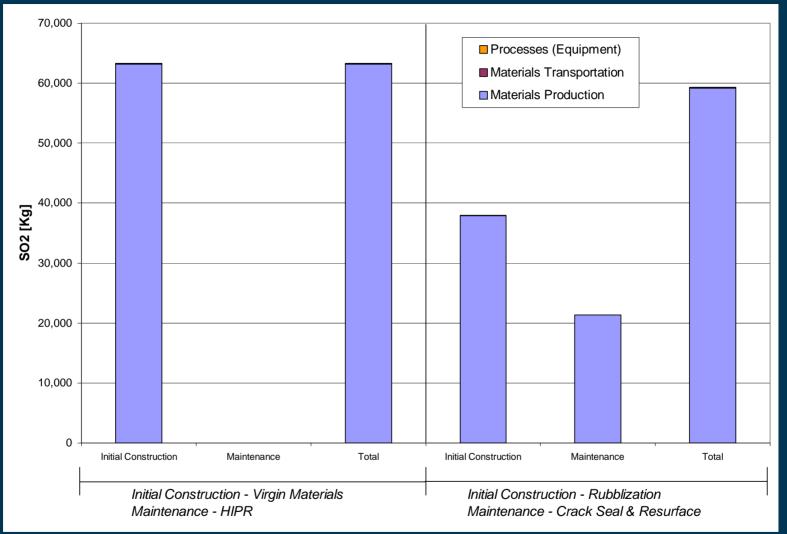
Case Study Results: CO₂ / GWP (Mg)

Initial Construction: Rubblization generates ~200 Mg less of CO_2 emissions (reduced materials production) Maintenance: HIPR generates ~75Mg less of CO_2 emissions (reduced materials production)


Case Study Results: NO_x Emissions (kg)

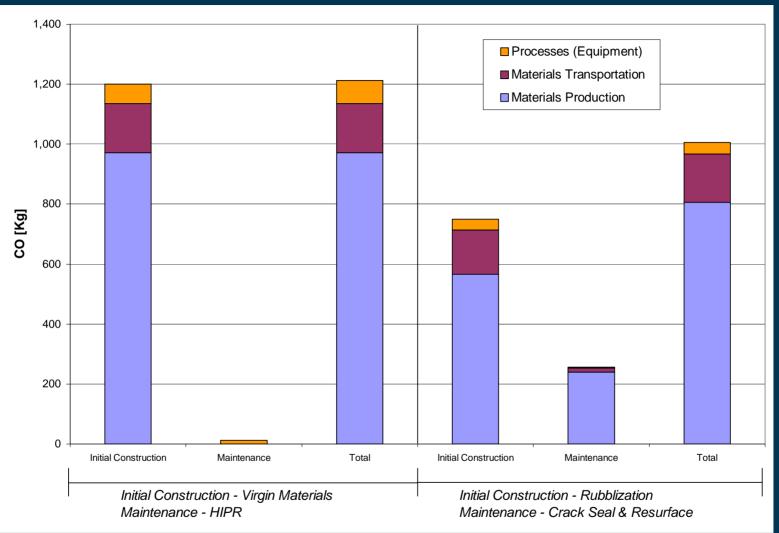
Initial Construction: Rubblization generates ~1000kg less NOx emissions (reduced emissions from all sections) Maintenance: HIPR generates ~700kg less NOx emissions (no material production or transportation)

Case Study Results: PM₁₀ Emissions (kg)



Initial Construction: Rubblization generates ~2000kg less PM₁₀ emissions (reduced materials production)

Maintenance: HIPR generates ~300kg less PM₁₀ emissions (no material production or transportation)


Case Study Results: SO₂ Emissions (kg)

Initial Construction: Rubblization generates ~25K kg less SO₂ emissions (reduced materials production)

Maintenance: HIPR generates ~20K kg less SO₂ emissions (no materials production)

Case Study Results: CO Emissions (kg)

Initial Construction: Rubblization generates ~500kg less CO emissions (reduced materials production)

Maintenance: HIPR generates ~250kg less CO emissions (no materials production or transportation)

Decision-making

- So how does one make a decision with so many performance metrics?
- It's not trivial, but it needs to be done transparently and rigorously to defend the sustainability of a highway design

Conclusions

- The future of utilizing recycled materials, including RAP, may include an assessment of sustainability and life cycle impacts
- There are tools available to specifically address the life cycle impacts of roadway construction, and recycling
- Recycling and recycled materials use are two important components of sustainability in highways
- The RMRC has
 - > conducted some 43 research projects nationwide
 - conducted training for DOT/EPA personnel in 39 states
 - developed specifications and recommended practices adopted by AASHTO
 - developed important tools for evaluating the sustainability and life cycle impacts of highway construction and maintenance

Caveats

- Use of recycled materials is <u>VERY</u> site specific. Just because it worked at one site does not mean it will work at your site, and vice versa.
- Recycled materials must be considered at the very beginning of the project, not in middle of the project.
- Include all stake holders (including public) at the beginning of the project to avoid surprises at the end.

Acknowledgements

• Dr. Kevin Gardner, Director RMRC

• Dr. Jenna Jambeck, RMRC

• Alberta Carpenter, PhD Student

Further information available on RMRC website:

www.rmrc.unh.edu

