



# Ultra-High Performance Concrete for Steel Beam End Repairs

Arash E. Zaghi, PhD, PE, SE Associate Professor, University of Connecticut

> NESMEA 2017 Conference October 17-18, 2017 | Hartford, CT

### Outline





# Introduction to the Problem



# America's Crumbling Infrastructure UCONN



ASCE Report Card





60,000 of the nation's bridges were STRUCTURALLY DEFICIENT in 2016



\$123 billion to catch up with the BACKLOG

of rehabilitation projects



### Problem – Corrosion Damage

- 15% of structurally deficient bridges experience heavy corrosion damage
- \$8.3 billion is spent annually to repair or replace highway bridges with corrosion
- Girder bridges mainly suffer from corrosion at the girder ends
- The main cause of corrosion damage is deicing chemicals



### Impact on the Structural Capacity









#### **Current Repair Method**



## **Overview of Proposed Repair Method**





#### **Repair Concept**





#### Load Transfer Mechanism





## Ultra High Performance Concrete

#### Definition of UHPC (FHWA 2011)

- Material consisting of optimized granular constituents
- Maximum W/C ratio of 0.25
- Compressive strength of larger than 22 ksi
- Enhanced durability via discontinuous pore structure
- □Self consolidating without vibration
- Constituents: cement, silica fume, silica powder, sand, water, admixtures, steel fibers

| Component               | Mass<br>Fraction (%) |  |
|-------------------------|----------------------|--|
| Premix Powder           | 86.6                 |  |
| Water                   | 5.1                  |  |
| Premia 150 (HRWR 1)     | 0.7                  |  |
| Optima 100 (HRWR 2)     | 0.5                  |  |
| Turbocast (Accelerator) | 0.9                  |  |
| Steel Fibers            | 6.2                  |  |

#### Ultra High Performance Concrete





Time [days]

### Ultra High Performance Concrete





# Phase 1: Large Scale Girder Tests





Tested three W21x55 Girders

- **1. Undamaged:** Baseline to measure capacity.
- **2. Damaged:** Web and flange reduction to simulate corrosion damage.
- **3. Repaired:** Same section reduction as Damaged, but with UHPC repair.



UC

CHOOL OF ENGINEERI



### Phase 1: Large-Scale Girder Tests

**Undamaged** Global Web Buckling



Damaged Localized Web Buckling



**Repaired** Flexural Yielding





### Phase 1: Large-Scale Girder Tests





## Phase 2: Development of Design Guide





### Phase 2: Project Overview

Investigation of stud capacity in UHPC

Experimental study of full-scale plate girders

High fidelity finite element modeling and parametric studies

Development of design guide and standard details for field application



#### Behavior of shear studs in UHPC is different than in regular concrete.









#### Typical failure of push-out Specimens









#### **Phase 2: Durability Testing**



Prior to casting UHPC, the web of the steel section was submerged for 60 hours to achieve surface rust.



#### Phase 2: Durability Testing





#### Phase 2: Durability Testing







- 54"-Deep plate girders
- Test different repair geometries:
  - Full Height
  - Half Height
- Simulate Live Load







Damaged Girder

Half-Height Repair

Full-Height Repair









# Repair Design Example





### Pilot Bridge Repair Design

- Constructed in 1965
- □ Four simply supported spans
- Rolled steel multi-girder superstructure





#### Pilot Bridge Repair Design





#### **Current Condition**





### **Design Number of Shear Studs**

|                    |                     | Demand<br>(kip) | # of ½"<br>Studs | # of <b>%</b> ″<br>Studs |
|--------------------|---------------------|-----------------|------------------|--------------------------|
| Load<br>Design     | Live Load Only      | 116             | 9                | 6                        |
|                    | Strength I (AASHTO) | 301             | 22               | 15                       |
| Capacity<br>Design | Bearing             | 640             | 48               | 32                       |
|                    | Shear               | 568             | 42               | 28                       |





#### Sample Repair Design





### Fatigue Control

For studs embedded in UHPC (Cao 2017)

 $8 \log \Delta \tau + \log N = 22.1131$ 

ADT = 67,000 vehicles per day

N = 147 million cycles (50 year design life)

Allowable stress range (based on fatigue)= 7.9 ksi

Stress range demand under fatigue truck= 7.0 ksi



### **Summary and Conclusions**



## Summary and Conclusion

- A novel method has been developed to rehabilitate girders with corrosion damage by attaching UHPC panels to the girder using shear studs.
- The composite action of the UHPC repair introduced a secondary load path through the shear studs to transfer bearing and shear forces.
- The UHPC repair demonstrated the ability to restore bearing capacity lost due to corrosion over 5 times that of a damaged girder.
- This repair offers flexibility regarding location and number of studs to tackle complex geometries under various limit states



### Acknowledgements

- The Connecticut Department of Transportation
  - Rabih Barakat
    Bradley Overturf
    Richard Hanley
  - Timothy Fields
    Anne-Marie McDonnell
    Mary Baker
- Mike Culmo of CME Associates
- Connecticut Transportation Institute of UCONN
- Graduate Students: Kevin Zmetra, Kevin McMullen, Dominic Kruszewski and Alexandra Hain





40

#### Repair for Steel Bridge Girders with Corrosion Damage Utilizing UHPC

## Thank you!

Ultra High Performance Concrete Workshop June 28, 2017 | Albany, New York



What is the current common method for repairing deteriorated steel girder end regions? (single answer)

- a) Apply post-tensioning along length of girder tension flange,
- b) Weld or bolt new steel plates over deteriorated steel,
- c) Encase the end 10' of each deteriorated girder in conventional concrete,
- d) Selectively apply steel studs and UHPC in and near deteriorated regions.



What are some advantages of using UHPC to repair deteriorated steel girder end regions? (multiple answer)

- a) UHPC can easily flow into tight spaces,
- b) UHPC can carry higher tensile and compressive stresses than conventional concrete,
- c) UHPC costs less than conventional concrete,
- d) UHPC is far more durable than conventional concrete.



The UHPC girder end repair offers flexibility regarding location and number of studs to tackle complex geometries under various limit states? (True/False)



The full scale structural testing of the UHPC repair solution demonstrated that the lost bearing and shear capacity can often be recovered in a properly detailed UHPC repair? (True/False)