Concrete Scaling USFD Henry B. Prenger, P.E.

Surface Deterioration

- Pop Outs
- Mortar flaking
- Scaling

Mortar Flaking

Factors Affecting Scaling

- Permeable and poor-quality concrete due to:
 - -High water-cementitious material ratio
 - -Excessive slump for prevailing job conditions
 - -Overworking of wet concrete
 - -Premature finishing operations
 - -Inadequate curing
 - -Low compressive strength at the surface
- Inadequate air content for concrete exposed to freeze and thawing
- Deicing Salts

Recorded Temperature 1993-94 High & Lows

For scaling resistance, you need:

- A good mix design (4000 psi / .45 wcr)
- Good plastic properties (slump and air)
- Proper inspection
- Good finishing practices
- Proper curing
- To seal the concrete
- To place concrete at the proper time of the year

M	ix
Des	ign

ACI 301 ACI 318 ACI 332 NRMCA

Suggested Mixture Design		
Modified Maryland SHA Mix 6		
Strength (psi)	4000	
Wcr (max)	0.45	
Cementitious Factor (lbs.)	615	
Air (%)	5-8	
Slump (in.)	3-5	
Coarse Aggregate Size (ASTM C33)	57 / 67	
Concrete Temperature (°F)	50-95	
Max Slag Cement Replacement (%)	50	
Min / Max Fly Ash Replacement (%)	15-25	
Admixtures: Air Entraining, Normal Water		
Reducing, Retarding, Non-Chloride Accelerating,		
High Range Water Reducing		

Slump and Air

Sealing

Slag Cement, Fly Ash and De-Icing Salts

The Deleterious Chemical Effects of Concentrated Deicing Solutions on Portland Cement Concrete

Study SD2002-01 Executive Summary

Prepared by Michigan Tech Transportation Institute 1400 Townsend Drive Houghton, MI

April 2008

De-Icer Scaling

ASTM 672

Inadequate Air Void System

Fig. 3 Representative area of concrete in Core Sample M7OLS ASE 7/29 Lot 7959-B showing the air-void system; millimeter scale.

Bleed Water Finished into Surface

High WCR in Surface of Concrete

No Air in Top Surface

Where do we go from here?

ADMINISTERED BY THE NRMCA

Finishers

Inspectors

Deliverables

- Booklet in plain simple terms on important factors in finishing exterior concrete
- Keep it simple and focused on what causes scaling
- Straight forward test (one for finishers and one for inspectors)
- Should there be a prerequisite for years of experience
- Have a practical part where participants can see the effect of water on concrete
- Spanish and English

Safety

Jointing

Challenges

- Spanish translation
 - Work with finishers, utilize Spanish speakers in industry
- Finding suitable sites for practical
 - NRMCA
 - Partner with Ready Mix
 - Use actual sites
- Finding suitable sites for presentation and testing
- How many people on a crew need to be certified
- Losing certification for improper finishing (legal issues)

Thanks to:

- Swope and Associates (Sika)
- Bluegrass Materials
- Vulcan Materials
- LafargeHolcim
- Priority Construction

