

HVS Evaluation of Flexible Overlays of Composite Pavements

Background

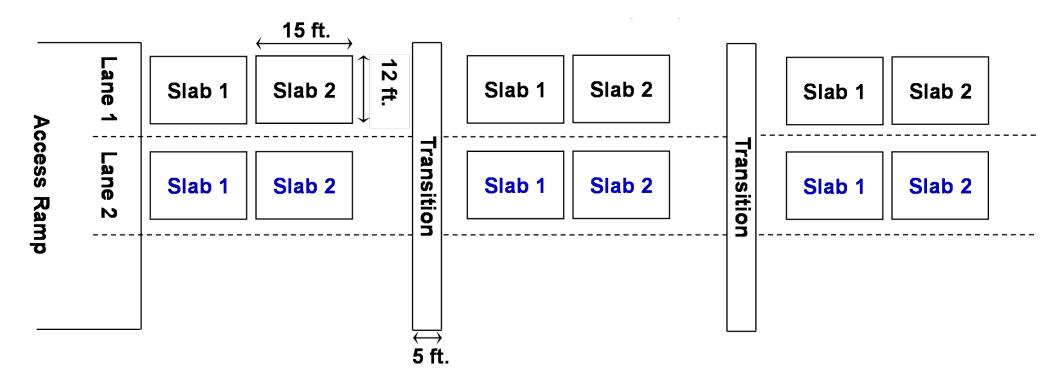
- ☐ Approximately 50% of the pavements in New Jersey (NJ) are in "Poor" condition.
- ☐ Approximately 50% of those pavement are composite pavements (asphalt layer on top of a Portland Cement Concrete (PCC) layer).

Background

- ☐ To improve the conditions of NJ pavements, there is a need to investigate the potential for using thin asphalt overlays.
- Overlays are used for rehabilitating and preserving PCC pavements.

Study Objective

Identify and predict the expected life of thin asphalt overlay treatments



Full Scale Pavement Sections

Plan View of the Full-Scale Pavement Sections Planned for this Project:

Full Scale Pavement Sections

Cross-Section
View of the FullScale Pavement
Sections Planned
for this Project

Thin asphalt layer ≈ 3 in.

PCC layer ≈ 8 in.

Thin Asphalt Overlay

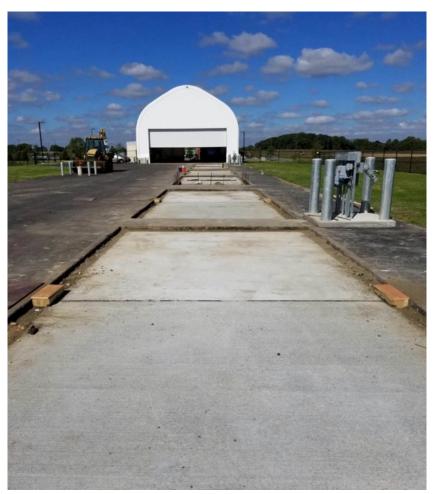
Portland Cement Concrete

Comp. Unbound Base

Compacted Subgrade

Existing Soil

Portland Cement Concrete Layer


- ☐ Cylinders were prepared with the mix
- □ 7 day compressive strength test was conducted and passed
- □ 14 day and 28 day tests will be performed

Portland Cement Concrete Layer

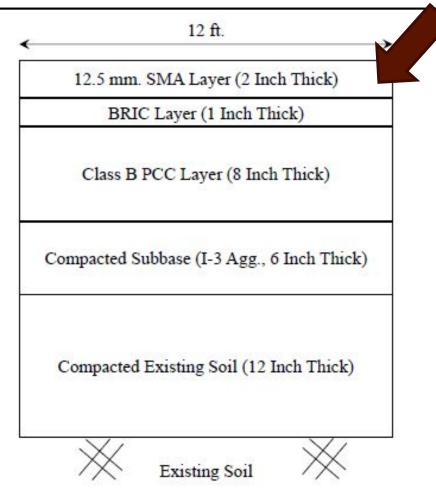
□ Poured on Oct 4th, 5th, and 7th

Thin Asphalt Overlays

- Six full-scale pavement sections will be constructed in the RU-APTF
- ☐ Four thin asphalt overlay mixes;
 - Traditional Superpave Mix
 - Stone Matrix Asphalt (SMA) Mix
 - High Performance Thin Overlay
 - Binder Rich Intermediate Course (BRIC)

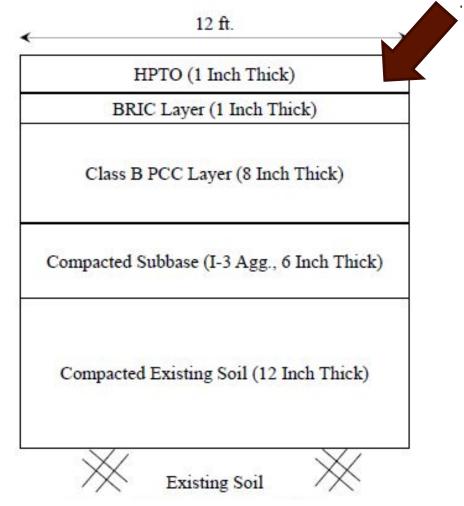
Testing Sections

12 ft. 9.5ME64 HMA Layer (3 Inch Thick) Class B PCC Layer (8 Inch Thick) Compacted Subbase (I-3 Agg., 6 Inch Thick) Compacted Existing Soil (12 Inch Thick) **Existing Soil**


12 ft. 9.5ME64 HMA Layer (2 Inch Thick) BRIC Layer (1 Inch Thick) Class B PCC Layer (8 Inch Thick) Compacted Subbase (I-3 Agg., 6 Inch Thick) Compacted Existing Soil (12 Inch Thick) **Existing Soil**

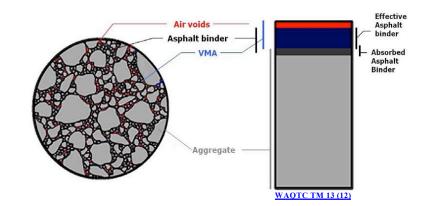
Testing Sections

12 ft. 12.5 mm. SMA Layer (3 Inch Thick) Class B PCC Layer (8 Inch Thick) Compacted Subbase (I-3 Agg., 6 Inch Thick) Compacted Existing Soil (12 Inch Thick) **Existing Soil**



Testing Sections

12 ft. HPTO Layer (2 Inch Thick) Class B PCC Layer (8 Inch Thick) Compacted Subbase (I-3 Agg., 6 Inch Thick) Compacted Existing Soil (12 Inch Thick) **Existing Soil**



Laboratory Experiments

- Mixture Tests
 - Volumetrics
 - Total Air Voids (VTM)
 - Aggregate Gradation

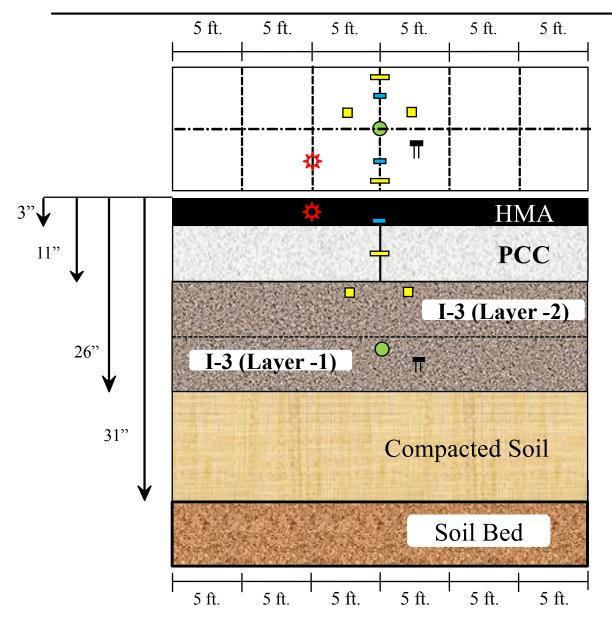
- Binder Content
 - Binder Content (Extraction & Recovery of Binder)
- Performance Tests
 - Overlay Tester (OT)
 - Asphalt Pavement Analyzer (APA)
 - Tensile Strength Ratio (TSR)

Instrumentation

□ Procurement Status

Sensor/DAQ	Status
NI cDAQ System	Delivered
Pressure Cells	Installed
Soil Compression Gauges	Installed
Thermocouple	Installed*
Asphalt Strain Gauges	Delivered
LVDTs	Installed

^{*} Installed in I-3 Only



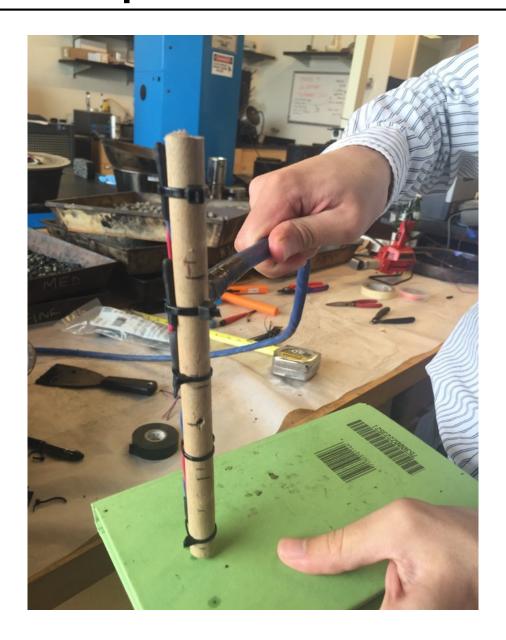
Instrumentation

- Installation of Sensors
 - □ Army Corps of Engineers (USACE) assisted Rowan team with the preparation and installation of the sensors
 - □ Rowan team installed pressure cells and thermocouples with help of USACE in I-3 subbase layer
 - □ Rowan team installed compression gauges with help of USACE in second layer of I-3

Instrumentation

Sensor Layout

- Longitudinal Asphalt Strain Gauges (Total: 2)
- Pressure Cell (Total: 2, 2 600KPa and 1 250KPa)
- Macrosensors LVDT (Total: 2)
- □ CTL Soil Compression Gauge (Total: 2)
- Type T thermocouples will be used for temperature measurements.



Pressure Sensor Installation

Thermocouple Installation

Compression Gauge Installation

