Comparison of Different Laboratory Aging Methods for Performance Evaluations

> Reyhaneh Rahbar-Rastegar Jo Sias Daniel and Eshan V. Dave

> > NESMEA 2017 Annual Meeting October 18, 2017 Hartford, CT





# Aging

- Hot mix asphalt pavements undergo aging during mixing and compaction, and over the service life.
  - Short term aging (mixing and compaction)
  - Long term aging (pavement service life)



- Aging effects:
  - Increase of stiffness
  - Decrease of relaxation
  - Increase of brittleness



More cracking susceptibility



## **Project Overview**

- NHDOT Project 26962O
- I0 plant mixed, lab compacted mixtures
  - PG 58-28, PG 52-34
  - 12.5 and 19 mm NMAS
  - 20 and 30% RAP, RAP/RAS
- Binder testing
- Mixture testing

# **Objectives**

- To investigate how mixtures linear viscoelastic (LVE), fracture, and fatigue properties change with different aging levels.
- To investigate impact of different long term lab conditioning protocols.





# Laboratory Aging

- ✓ Short-term aging condition
- ✓ Long-term aging condition
  - 5 days, 85  $^\circ\!\mathrm{C}$  for compacted samples (AASHTO R30)
  - 5 days, 95 °C, loose mix (NCHRP 9-54 project)
  - 12 days, 95 °C, loose mix (NCHRP 9-54 project)
  - 24-hour, 135 °C, loose mix (Asphalt Institute)







- Complex Modulus Testing (AASHTO TP-79)
  - IE\*I and  $\delta$  master curve
  - Black Space Diagram
  - Higher E\* and lower  $\delta \rightarrow$  more potential to cracking







#### **LVE Characteristics**



- Higher dynamic modulus and lower phase angle for LTOA mixtures.
- Change of phase angle master curve shape; horizontal and vertical shift in peak phase angle



#### **LVE Characteristics**



- Higher stiffness for LTOA mixtures (difference varies between 1 to 6 times).
- Lower relaxation at high and intermediate freq. and higher relaxation at low freq. for LTOA mixes.



#### **Black Space Diagram**



 For same level of thermal stress, relaxation capabilities of asphalt mixtures would diminish with increasing aging levels.

#### Mixture G-R Parameter



- Increase of the ratio in higher aging levels.
- 12 days (95 °C) and 24 hr. (135 °C) have similar values.



- Uniaxial Fatigue Testing
- Based on Simplified Viscoelastic Continuum Damage approach (AASHTO TP 107)
  - Damage Characteristics Curve (C S)
  - Fatigue Failure Criterion  $(G^R N_f)$
  - N<sub>f</sub> @ G<sub>R</sub>=100

 G<sup>R</sup>: The rate of change of the averaged released pseudo strain energy (per cycle) throughout the entire history of the test.







100000

10000

1000

10

1000000

#### Fatigue Properties (C-S)



- Similar integrity for STOA and 5 days LTOA, but high levels of aging make significant difference.
- Similar C-S curves for PG 58-28 and PG 52-34 mixtures.



- Disk-Shaped Compact Tension (DCT) Test (ASTM D7313-13)
- Semi-Circular Bend (SCB) Test (AASHTO TP 124)
  - Fracture Energy (G<sub>f</sub> = work / fracture surface area)
  - Flexibility Index (FI = G<sub>f</sub> / Slope at inflection point)
  - Fracture Strain Tolerance (FST = G<sub>f</sub> / Fracture strength)







#### Fracture Properties, $FST = (G_f/S_f)$



- Higher FST for 5 days aging than 12 days.
- 24 hr. have higher FST than 12 days for RAP/RAS mixtures.



# Conclusion

- All levels of long term aging have made a significant increase on LVE properties (IE\*I and δ)
- 24 hour (135 °C) and 12 days (95 °C) aging levels create similar effects on LVE properties, but not on fatigue and fracture properties.
- Cracking resistance (FST) decrease as the aging level changes from 5 days to 12 days, but there is not an evident trend between the fracture properties of 24 hour and 12 days.
- This study supports 12 days at 95 °C aging protocol on basis of fracture test results.

#### Future Work

- Expand the data base, additional mixtures from different locations of country.
- Testing and analysis of cores that have been aged in the field.
- Extend this research to develop an aging prediction model.
- Develop new thresholds for available cracking parameters with the effect of aging.



## Acknowledgement

- New Hampshire Department of Transportation
- Pike Industries, Inc.
- UNH Asphalt Research Group







# Thank you!

#### any questions?

Reyhaneh Rahbar Email: rrahbar@purdue.edu Tel: 765-494-7289







#### **Shape Parameters**



- The evolution of shape parameters with aging.
- More variation in 24 hr., 135°C aged mixtures.



#### Fracture Properties, FI (SCB)



