ENGINEERING PROPERTIES OF FOAMED RECYCLED GLASS AS A LIGHTWEIGHT FILL

NESMEA 2016, Newark, DE

Robert H. Swan, Jr. – Drexel University Seungcheol Yeom* – Drexel University Kurt J. Sjoblom – Drexel University Timothy D. Stark – University of Illinois at UC Archie Filshill – Aero Aggregates, LLC

OUTLINE OF PRESENTATION

- Background
- Testing Program
 - Materials
 - Testing Methodology
- Discussion and Results
 - Effect of Compaction Energy
 - Effect of Static Compression
 - Effect of Direct Shear Testing
- Conclusions

Process transforms glass cullet into a new material – Foamed Glass

Glass Processing

- Cleaning of glass cullet
- Uses all colors and any size
- Milled into powder
- Mixed with foaming agent

Foamed Glass Kiln

History of Lightweight-Foamed Glass Aggregates (LWA-FG)

- Developed in Germany in early 1980's
- Technology taken to Norway in 1990's
- Thermal barrier for roadways
- Led to lightweight applications
- Growth throughout Scandinavia
 - Geotechnical Applications
- Germany and Switzerland
 - Thermal insulation
 - Additive for lightweight concrete

Foamed Glass Aggregates Applications

- Many uses for lightweight aggregates
 - Embankment fill over soft soils
 - Retaining walls
 - Bridge abutments
 - Reduced lateral load of backfill
 - Under foundation slab insulation
 - Insulation layer
 - Greenroofs and Plaza decks

LWA-FG MATERIALS

- LWA-FG material provided by Aero Aggregates, LLC
- LWA-FG made from 100% recycled glass

Typical properties

Property	Manufacturer	Actual
Particle size range (mm)	10 to 60	10 to 30
D ₁₀ (mm)	38	20
D ₃₀ (mm)	42	27
D ₆₀ (mm)	50	30
C _u /C _c	1.32/0.93	1.5/1.22
Bulk Density (kg/m ³)	210	227

TESTING METHODOLOGY

- Testing program
 - evaluate the change in grain size distribution (GSD) of the LWA-FG material as a function of:
 - i.Compactionii.1-D compressioniii.Direct shearenergy (impact(consolidation andbehaviorand vibratory)creep)
 - Dry and wet grain-size analyses were performed after each of the engineering property tests
 - Goal was to assess the amount of particle breakage due to crushing effect of:
 - i. Compaction ii. Compression iii. Shearing
 - Each post grain-size analysis was compared to the average asreceived particle-size analysis on the LWA-FG material (trial #1 previous slide)

DISCUSSION/RESULTS – EFFECT OF COMPACTION ENERGY

- Two sets of impact compaction tests on the LWA-FG material
 - Test #1 used ASTM D 1557 Method C (compactive energy 2,700 kNm/m³)
 - Compacted Density 612 kg/m³
 - Test #2 used modified ASTM D 1557 Method C (compactive energy 1,200 kN-m/m³) which is twice the energy of ASTM D 698
 - Compacted Density 536 kg/m³
- One vibratory compaction test on the LWA-FG material
 - Maximum index density using ASTM D 4253
 - Maximum density 325 kg/m³
 - Minimum index density using ASTM D 4254
 - Minimum density 227 kg/m³

EFFECT OF COMPACTION ENERGY

EFFECT OF STATIC COMPRESSION

 Two sets of one-dimensional (1-D) sustained static compaction tests on the LWA-FG material using ASTM D 2435

Test Set #1	Test Set #2
8 Loading from 6 to 766 KPa (in double load increments)	8 Loading from 6 to 766 KPa (in double load increments)
3 Unloading from 192, 48 and 12 KPa	3 Unloading from 192, 48 and 12 KPa
Loading for 15 minutes during test	Loading for 4 hours during test

- A single 1-D sustained load (creep) test on the LWA-FG material was conducted using ASTM D 2435
 - Test conducted under a constant load of 24 KPa
 - Load was maintained for 10,025 minutes (7 days)
 - Vertical deformations taken every 5 minutes

EFFECT OF STATIC COMPRESSION

EFFECT OF STATIC COMPRESSION

Vertical Stress vs. Time (Creep) Under Vertical Stress of 24 kPa

Creep Loading Under 24 kPa

EFFECT OF DIRECT SHEAR TESTING

- Two sets of direct shear test series were conducted on the LWA-FG material following ASTM D 3080M using a large scale shear box having plane dimensions of 305 mm by 305 mm and a total depth of 153 mm
 - Test Series #1 conducted on as-received LWA-FG material
 - placed dry lightly tamped
 - normal stresses of 14.4, 35.9, 57.5, 144, 287, and 426 kPa
 - each normal load was maintained for 15 minutes
 - shear displacement rate of 1 mm/min
 - Test Series #2 conducted on modified LWA-FG material
 - material was modified with ASTM D 1557 compactive energy
 - placed dry lightly tamped
 - normal stresses of 144, 287, and 426 kPa
 - each normal load was maintained for 15 minutes prior to shearing
 - shear displacement rate of 1 mm/min

EFFECT OF DIRECT SHEAR TESTING

DISCUSION AND RESULTS | 16

EFFECT OF DIRECT SHEAR TESTING

Creep Loading Under 24 kPa

CONCLUSIONS

- Useful laboratory data showing effect of particle breakage on the engineering property testing of LWA-FG material.
- LWA-FG material is a very brittle material that improves its mechanical properties as a function of particle breakage.
- LWA-FG material transforms from a uniformly graded material to a very well graded material as a function of impact compactive energy or direct shear.
- Static loading under vertical stresses greater than 192 KPa have a moderate effect on particle distribution approaching a well graded distribution.