

The Identification and Prevention of Alkali Silica Reactive (ASR) Aggregates

2017 Northeastern States' Materials Engineers Association (NESMEA) Annual Conference

October 17-18 – Hartford, CT

John Grieco, PE Director of Research & Materials

Richard Mulcahy, EIT

Quality Assurance Section of Research & Materials

2017 NESMEA Annual Conference

What is Alkali Silica Reaction?

Definition

A Process in which silica (found in aggregate) in the presence of moisture, is broken down by alkalis (sodium and potassium found in cement) and produces an expansive gel.

Three Step Process

- Alkali + Reactive Silica = Gel
- Gel + Moisture = Gel Swelling Pressure
- Gel Swelling Pressure > Concrete Tensile Strength = Concrete Cracking and Failure

Akali + Reactive Silica = Gel

Gel + Moisture = Gel Swelling

2017 NESMEA Annual Conference

Gel Pressure > Tensile Strength

1996

- >ASR found on Memorial Bridge in Springfield
- FHWA advised MassDOT to test Aggregates for ASR

- MassDOT requires producers to submit certified ASR Test Results Annually
 - "Modified" AASHTO T 303 Accelerated Mortar Bar Test (AMBT) results annually
 - ASTM C295 Petrographic Examination

2003

MassDOT performs in-house ASR testing

- Discrepancy between MassDOT and producer test results
- Identified an aggregate source used by several producers which was "very highly reactive"

- MassDOT begins proficiency testing of independent laboratories for "Modified" AASHTO T303 (AMBT).
- Established a qualified list of approved testing laboratories based on their proficiency test performance.

- Identified 40 construction projects completed between 7 and 12 years ago that used the "very highly reactive" aggregate identified in 2003
- Developed research program to analyze concrete structures on the 40 projects, determine risk assessment and future management of the structures.

ASR Effected Precast Barrier

Contract 95505: Somerset-Fall River-Westport-Dartmouth, I-195 East, Precast Barrier At Highland Ave. Bridge

ASR Effected Sign Foundation

Contract 95559: Raynham-Taunton-Norton-Mansfield-Wrentham Sign Foundations, South Bound Exit 8 Route 138 1 Mile Advance Sign Foundation-Gauge Point Measurement

ASR Effected Sign Foundation

Contract 98106: Bridgewater-Raynham-Taunton-Berkley-Freetown, Exit 14B Route 24 South Bound

ASR Effected Culvert

Contract 96527: Somerset, Route 138 at Read Street, Precast Culvert South Side Riverside Avenue

ASR Effected Parapet Wall

Contract 97343: Middleborough, Miller Street / I-495 South Bound Bottom of Parapet Wall on Outside of Bridge Approximately 12' Left of the Southwest Corner of the Bridge

2009

MassDOT begins ASTM C1293 Concrete Prism Test (CPT) of a Canadian aggregate source known to be historically highly reactive

2011

MassDOT is approached by the FHWA to build a long-term ASR Exposure Site

2012

MassDOT and FHWA break ground on ASR Exposure site on June 6, 2012

2016

MassDOT begins experimenting with AASHTO TP 110 Mini Concrete Prism Test (MCPT)

- MassDOT begins ASTM C1293 (CPT) on all MassDOT approved aggregate sources
- 5 year anniversary of the long-term ASR exposure site study

MassDOT Future with ASR

2018

- MassDOT will perform AASHTO TP 110 (MCPT) on all MassDOT aggregates
- MassDOT will utilize CCRL Proficiency Program for Independent Laboratory pre-qualification

- > 10 year anniversary of the long-term ASR exposure site study
 - Determine if field results correlate with lab tests
 - Prescribe treatments

"Screening" for ASR

Report on Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction

quarried carbonate that has been identified as being potentially alkali-carbonate reactive by chemical

composition in accordance with test method CSA A23.2-26A [†]Note: The heavier dotted lines represent the preferred approach whereas the faint dotted lines represent a higher risk approach.

U.S.Department of Transportation

Federal Highway Administration

2017 NESMEA Annual Conference

"Screening" for ASR

ASTM C295

Petrographic Examination

AASHTO T 303

Accelerated Mortar Bar Test (14 days)

AASHTO TP 110

Mini Concrete Prism Test (56 to 84 days)

ASTM C 1293

Concrete Prism Test (1 to 2 years)

□ Long-Term Exposure Site (10 to 20 years)

ASTM C295 Petrography

ASR is identified by the dark areas around the aggregate. This specimen shows ASR gel cracks extending from the aggregate into the surrounding paste.

2017 NESMEA Annual Conference

AASHTO T 303 (AMBT)

Duration
14 days
Specimen Size
1 x 1 x 10"

AASHTO T 303 (AMBT)

	14-Day Expansion	Expected Signs of ASR
Reactivity	in AMBT, %	distress in the Field
Nonreactive	≤0.1	N/A
Moderately		
Reactive	>0.1, ≤0.30	>5 years, <10 years
Highly		
Reactive	>0.30, ≤0.45	<5 years
Very highly		
Reactive	>0.45	<5 years

AASHTO TP 110 (MCPT)

Duration

56 to 84 days
 (depends on rate of reactivity)

Specimen Size

≥ 2 x 2 x 10"

AASHTO TP 110 (MCPT)

	56-Day Expansion in	Average 2-Week Rate of Expansion	Expected Signs of ASR
Reactivity	MCPT, %	from 8 to 12 Weeks	distress in the Field
Nonreactive	≤0.03	N/A	N/A
Nonreactive	>0.03, ≤0.04	≤0.01 per 2 weeks	N/A
Low/slow			
Reactive	>0.03, ≤0.04	>0.01 per 2 weeks	>10 years
Moderately			
Reactive	>0.04, ≤0.12	N/A	>5 years, <10 years
Highly			
Reactive	>0.12, ≤0.24	N/A	<5 years
Very highly			
Reactive	>0.24	N/A	<5 years

AASHTO TP 110 (MCPT)

Efficiency of Mitigation	56-Day Expansion in MCPT, %
Effective	≤0.020
Uncertain	>0.020, ≤0.025
Not Effective	>0.025

ASTM C 1293 (CPT)

Duration

1 to 2 years (depends on use of mitigation)

Specimen Size

> 3 x 3 x 10"

ASTM C 1293 (CPT)

	1-Year Expansion	Expected Signs of ASR
Reactivity	in CPT, %	distress in the Field
Nonreactive	≤0.04	N/A
Moderately		
Reactive	>0.04, ≤0.12	>5 years, <10 years
Highly		
Reactive	>0.12, ≤0.24	<5 years
Very highly		
Reactive	>0.24	<5 years

Long-Term Exposure Site

Duration

- 10 to 20 year study on the "efficacy" of the trialed "Treatments"
- Specimen Size
 - ▶ 15 x 15 x 28"

Specimens

73 Blocks

Long-Term Exposure Site

Depetivity	10 to 20 year	Expected Signs of ASR
Reactivity	Expansion (%)	distress in the Field
Nonreactive	≤0.04	N/A
Moderately		
Reactive	>0.04, ≤0.12	>5 years, <10 years
Highly		
Reactive	>0.12, ≤0.24	<5 years
Very highly		
Reactive	>0.24	<5 years

"Candidates" for Prevention

"Candidates" for Prevention

Coarse Aggregate								
Reactivity	AMBT	Agg.	Minoralogy	AMB da	T (14 ys)	CPT (360 days)		
Class	Range	ID	wineralogy	Mass DOT	U of Texas	Mass DOT	U of Texas	
		1	Diorite (mainly); granitic & volcanic (traces)	0.05 - 0.09	0.095	0.03	0.024	
Nonreactive	<0.10	2	Mixed Diorite/gneiss/granite/s chist	0.04 - 0.09	0.066	0.06	0.074	
Moderately Reactive	0.10 - 0.29	3	Pinkish meta-granite	0.20 - 0.32	0.072	0.1	0.054	
Highly Reactive	0.30 - 0.45	4	Mixed gneiss/granitic	0.30 - 0.30	0.324	0.22	0.155	
		5	Mixed gneiss/schist/quartzite	0.50 - 0.54	0.063	0.09	0.077	
Very Highly Reactive	>0.45	6	Greywacke/sandstone	0.58 - 0.62	0.573	0.27	0.158	
		UT1	Rhyolitic volcanic rocks with quartz and granite	-	0.82	-	0.159	

"Candidates" for Prevention

	Fine Aggregate								
	Reactivity	AMBT Agg		Agg. Mineralogy		T (14 ys)	CPT (360 days)		
	Class	Range	ID		Mass DOT	U of Texas	Mass DOT	U of Texas	
	Nonreactive	<0.10	7	Mixed gneiss/quartzite/quartz/ feldspar sand	0.09 - 0.10	0.066	0.06	0.024	
	Moderately (Reactive	0.10 -	8	Mixed quartzite/gneiss/quartz/ feldspar sand	0.20 - 0.21	0.147	0.05	0.07	
		0.29	9	Mixed gneiss/quartzite/quartz/ feldspar sand	0.20 - 0.26	0.239	0.05	0.028	
	Highly Reactive	0.30 - 0.45	10	Mixed gneiss/schist/quartzite/ quartz/feldspar sand	0.38 - 0.40	0.327	0.06	0.051	
	Very Highly	>0.45 UT	UT2	Mixed quartz/chert/feldspar sand	-	0.64	-	0.582	
			UT3	Mixed quartz/chert sand	-	0.29		0.27	

Do Lab Test Methods Correlate?

AASHTO T 303 (AMBT) 14 Day Expansion (%) for 100% Cement

AASHTO TP 110 (MCPT) 56 Day Expansion (%) for 100% Cement

AASHTO T 303 (AMBT) vs ASTM C1293 (CPT) Expansion (%) for 100% Cement

AASHTO PP 65 AMBT vs ASTM C1293 (CPT) Expansion (%) for 100% Cement

AASHTO TP 110 (MCPT) vs ASTM C1293 (CPT) Expansion (%) for 100% Cement

2017 NESMEA Annual Conference

Duration

- 10 to 20 year study on the "efficacy" of the trialed "Treatments"
- Specimen Size
 - ▶ 15 x 15 x 28"

Specimens

73 Blocks

2017 NESMEA Annual Conference

Gauge Measurement Locations

Simulate

Correlate

Prescribe

"Placebo"

33 "Placebo" (Control) Blocks

- > No preventative measures
- 10 local aggregates at 3 levels of alkalinity of Portland Cement
 - 0.66, 0.88, and 1.10% Na2Oe
- > 3 non-local aggregates (Texas) at 1.10% Na₂Oe

"Placebo"

AGG REACTIVITY	BLOCK	AGG	Na ₂ Oe	CEM	FA	SLAG	SF	LITHIUM
Nonreactive	50	1	0.66%	100%	0%	0%	0%	0%
	26	2	0.66%	100%	0%	0%	0%	0%
	39	7	0.66%	100%	0%	0%	0%	0%
	51	1	0.88%	100%	0%	0%	0%	0%
	27	2	0.88%	100%	0%	0%	0%	0%
	40	7	0.88%	100%	0%	0%	0%	0%
	28	2	1.10%	100%	0%	0%	0%	0%
	41	7	1.10%	100%	0%	0%	0%	0%
	1	3	0.66%	100%	0%	0%	0%	0%
	42	8	0.66%	100%	0%	0%	0%	0%
	11	9	0.66%	100%	0%	0%	0%	0%
	2	3	0.88%	100%	0%	0%	0%	0%
	43	8	0.88%	100%	0%	0%	0%	0%
Moderately Reactive	12	9	0.88%	100%	0%	0%	0%	0%
	3	3	1.10%	100%	0%	0%	0%	0%
	44	8	1.10%	100%	0%	0%	0%	0%
	13	9	1.10%	100%	0%	0%	0%	0%
	14	9	1.10%	100%	0%	0%	0%	0%
	49	UT3	1.10%	100%	0%	0%	0%	0%
	45	4	0.66%	100%	0%	0%	0%	0%
	29	10	0.66%	100%	0%	0%	0%	0%
Highly Reactive	46	4	0.88%	100%	0%	0%	0%	0%
Thighly Reactive	30	10	0.88%	100%	0%	0%	0%	0%
	47	4	1.10%	100%	0%	0%	0%	0%
	31	10	1.10%	100%	0%	0%	0%	0%
	52	6	0.66%	100%	0%	0%	0%	0%
	16	6	0.66%	100%	0%	0%	0%	0%
	53	6	0.88%	100%	0%	0%	0%	0%
Very Highly Reactive	17	6	0.88%	100%	0%	0%	0%	0%
	54	6	1.10%	100%	0%	0%	0%	0%
	18	6	1.10%	100%	0%	0%	0%	0%
	15	UT1	1.10%	100%	0%	0%	0%	0%
	48	UT2	1.10%	100%	0%	0%	0%	0%

ASR only occurs if ALL THREE Conditions are met! Eliminate One!

Nonreactive Aggregate
Fly Ash
Slag
Silica Fume
Lithium
Low Alkali Cement

40 "Treatment" (Preventative Measure) Blocks

- 4 of the most reactive local "Candidates" (Aggregates) chosen
- 2 levels of alkalinity of Portland Cement
 - 0.88 and 1.11% Na₂Oe
- > 7 preventative measures
 - 20% Class F fly ash
 - 30% Class F fly ash
 - 35% slag
 - 50% slag
 - 4% silica fume + 15% fly ash
 - 4% silica fume + 20% slag
 - 100% standard dose of lithium nitrate (0.55 gal of 30% lithium nitrate per pound of Na₂Oe)

MODERATELY REACTIVE AGGREGATE								
BLOCK	AGG	Na ₂ Oe	CEM	FA	SLAG	SF	LITHIUM	
72	3	0.88%	65%	0%	35%	0%	0%	
73	3	0.88%	50%	0%	50%	0%	0%	
70	3	0.88%	80%	20%	0%	0%	0%	
71	3	0.88%	70%	30%	0%	0%	0%	
10	3	1.10%	100%	0%	0%	0%	100%	
9	3	1.10%	76%	0%	20%	4%	0%	
6	3	1.10%	65%	0%	35%	0%	0%	
7	3	1.10%	50%	0%	50%	0%	0%	
8	3	1.10%	81%	15%	0%	4%	0%	
4	3	1.10%	80%	20%	0%	0%	0%	
5	3	1.10%	70%	30%	0%	0%	0%	

HIGHLY REACTIVE AGGREGATE									
BLOCK	AGG	Na₂Oe	CEM	FA	SLAG	SF	LITHIUM		
38	10	1.10%	100%	0%	0%	0%	100%		
35	10	1.10%	65%	0%	35%	0%	0%		
32	10	1.10%	50%	0%	50%	0%	0%		
36	10	1.10%	81%	15%	0%	4%	0%		
33	10	1.10%	80%	20%	0%	0%	0%		
37	10	1.10%	76%	20%	0%	4%	0%		
34	10	1.10%	70%	30%	0%	0%	0%		

	VERY HIGHLY REACTIVE									
BLOCK	AGG	Na ₂ Oe	CEM	FA	SLAG	SF	LITHIUM			
64	6	0.88%	65%	0%	35%	0%	0%			
68	5	0.88%	65%	0%	35%	0%	0%			
65	6	0.88%	50%	0%	50%	0%	0%			
69	5	0.88%	50%	0%	50%	0%	0%			
62	6	0.88%	80%	20%	0%	0%	0%			
66	5	0.88%	80%	20%	0%	0%	0%			
63	6	0.88%	70%	30%	0%	0%	0%			
67	5	0.88%	70%	30%	0%	0%	0%			
61	6	1.10%	100%	0%	0%	0%	100%			
25	5	1.10%	100%	0%	0%	0%	100%			
24	5	1.10%	76%	0%	20%	4%	0%			
57	6	1.10%	65%	0%	35%	0%	0%			
21	5	1.10%	65%	0%	35%	0%	0%			
58	6	1.10%	50%	0%	50%	0%	0%			
22	5	1.10%	50%	0%	50%	0%	0%			
59	6	1.10%	81%	15%	0%	4%	0%			
23	5	1.10%	81%	15%	0%	4%	0%			
55	6	1.10%	80%	20%	0%	0%	0%			
19	5	1.10%	80%	20%	0%	0%	0%			
60	6	1.10%	76%	20%	0%	4%	0%			
56	6	1.10%	70%	30%	0%	0%	0%			
20	5	1.10%	70%	30%	0%	0%	0%			

"Clinical" Trials: Day 1828 (5 yr)

Which "Patients" really need preventative "treatment"?

"Patients" that exhibit expansions >0.04 are considered to need preventative "treatment"

Long-term Exposure Site Expansion (%) for 1.10% Na₂Oe*; 100% Cement

Note* Aggregate 1 was tested using 0.88% Na₂Oe; Aggregate 9 is being tested twice

5 Year Expansion (%)

ASTM C1293 (1 Year) vs Long-term Exposure Site (5 Year) Expansion (%) for 100% Cement

"Clinical" Trials: Day 1828 (5 yr)

How well are the Low Alkali "treatments" working? **ASR** Aggregate 2017 NESMEA Annual

100% Cement; Aggregate No. 1 (Nonreactive)

Massachusetts Department of Transportation

100% Cement; Aggregate No. 10 (Highly Reactive)

"Clinical" Trials: Day 1828 (5 yr)

How well are the Mitigation "treatments" working?

- Fly Ash
- Slag
- Silica Fume

Lithium

Long-term Exposure Site Expansion (%) for Aggregate No. 5 (Very Highly Reactive)

Long-term Exposure Site Expansion (%) for Aggregate No. 10 (Highly Reactive)

Long-term Exposure Site Expansion (%) for Aggregate No. 6 (Very Highly Reactive)

Patient: UT 2 (Jobe, TX), No. 48

2017 NESMEA Annual Conference

Patient: UT 2 (Jobe, TX), No. 48

MassDOT Moving Forward

- Evaluate Exposure Site (10 to 20 yrs)
- Establish Trends
- Correlate Field Performance with Lab Tests
- Verify Aggregate Reactivity
- Decrease ASR Lab Test Frequency
- Implement AASHTO TP 110 (56 84 Days) and ASTM C 1293 (1 – 2 Years)
- Identify appropriate preventative "Treatment" to MassDOT aggregates to slow down or eliminate ASR

Conclusion

- Eliminate only ONE of the three conditions to eliminate ASR all together
- "Screen" "Patients" for ASR using various laboratory test methods
- "Prescribe" the proper "treatment" and "dosage" of "medicine" to the "Patients"
- Remember! Different "Patients" may react drastically dissimilar to the same "medicine"!
- Identify Nonreactive / reactive aggregates with confidence
- Correlate aggregates with appropriate lab tests

Conclusion

There is no Silver Bullet

Questions and Comments

2017 NESMEA Annual Conference