Percent Within Limits (PWL) Implementation for HMA Acceptance in Connecticut

North East States Materials Engineer Association 94th Annual Meeting

Bob Lauzon, Ph.D., P.E. Principal Engineer (Materials) ConnDOT

10/17/18

Overview

- HMA testing in Connecticut
 - In-place Density
 - Testing Process
 - Specification Requirements
 - Percent Within Limits (PWL) New!
 - Mixture
 - Testing Process
 - Specification Requirements
 - Sampling at the Paver New!
- Summary
- Questions

2009

• Prior to 2009:

- Nuclear gauge
- Lot = each day of production
- 10 to 20 density readings/locations per day
- Density adjustment for each lot based on the average density

Average % Density	% Adjustment (PA)
97.1 - 100	-2.5
92.0 - 97.0	0.0
91.0 - 91.9	-2.5
89.1 - 90.9	-5.0
87.0 - 89.0	-30
86.9 or less	-50 or rejection

TABLE 6 - Mat and Longitudinal Joint Adjustments

Weighted Average 40% Mat, 60% Joint

2009

• 2009: Positive adjustment and bridge lots added

Average % Density	% Adjustment for non-bridge lots	% Adjustment for bridge lots
97.1 - 100	-2.5	- 2.5
94.5 - 97.0	+2.5	+2.5
92.0 - 94.4	0.0	0.0
91.0 - 91.9	-2.5	- 10.0
89.1 - 90.9	-15.0	- 30.0
87.0 - 89,0	-30.0	- 50 or Remove and Replace
86.9 or less	Remove and Replace	Remove and Replace

DJUSTMENT VALUES FOR PAVEMENT DENSITY

Weighted Average 40% Mat, 60% Joint

• 2011:

- Field Cores by AASHTO T 331
- Lot = curb-to-curb (approximately 2000 tons)
- 4 Mat and 4 Joint cores per each lot

• 2013: Some roadway and bridge lots were combined. Adjustments changed from stepped to continuous.

Analysis Method	Simple Average	
Lot Size	2000 tons	
Analysis Area	Curb-to-curb	
Cores		
Standard Lot (no bridges)	<500 tons: 3 Mat - 3 Joint	
	>500 tons: 4 Mat - 4 Joint	
Combo Lot (w/decks <500' long)	<500 tons: 2 Mat - 2 Joint	
	(+1 each on bridge ≤300 feet)	
	(+2 on bridge 301 to 500 feet)	
	>500 tons: 4 Mat - 4 Joint	
	(+1 each on bridge ≤300 feet)	
	(+2 on bridge 301 to 500 feet)	
	Depending on length varies from	
Bridge Lot (only decks >500' long)	2 Mat & 2 Joint to 5 Mat & 5 Joint	

In-Place Density - Roadway

2018

OF

In-Place Density Increase

Important Factors:

- Consistent measurement method (AASHTO T 331) since 2011
- ConnDOT performs all testing in one location with experienced staff
- Contractor is responsible for obtaining core samples as directed
- Adjustments via a continuous function with a lower incentive threshold
- Statewide Density Summary report provided to Industry annually
- Continuous improvement of Specifications

In-Place Density Changes for 2019 *New!*

HMA Project Quantity (Per mix)	>3500 tons	
Lot Size	Mat Density Lot (Each 3500 tons*) - Joint Density Lot (Each 14,000 feet*)	
Analysis Method	PWL	
Analysis Area	tons placed (one pass or curb-to-curb)	
Cores		
(toudoud Lat (up buildess)	7 Mat cores per mat density lot (1 per 500 tons - stratified random)	
Standard Lot (no bridges)	7 Joint cores per joint density lot (1 per 2000 feet - stratified random)	
Combo Lot (w/decks <500' long)	Not Applicable	
Analysis Method	Simple Average	
Bridge Lot (only decks)	Varies from 2 Mat & 2 Joint to 5 Mat & 5 Joint depending on length	
	* partial lots (<3,500 tons, or <14,000 feet) may be used if material completes a course or 30 days have passed since initial	

placement of material in the lot.

In-Place Density Changes for 2019 *New!*

• Specification limits:

2019 (Simple Average <3500 tons)

2019	LSL	USL
Mat	92	97
Joint	91	97

2019 (PWL >3500 tons)

2019	LSL	USL
Mat	91.5	98
Joint	90	98

Justification:

- FHWA Stewardship Audit Spring 2018
- Analyzing 2016 & 2017 data with 2019 specification

2019

In-Place Density Changes for 2019 *Mew!*

2009

• Prior to 2009:

- Lot = each day of production
- Gradation and binder content used as acceptance criteria
- No positive adjustments
- Negative adjustment (10%) applied to material outside the criteria

Photo Courtesy of Tilcon Connecticut

2009

• **2009**:

- Air Voids and Binder Content used as acceptance criteria
- Positive or negative adjustments based on deviation from target in air voids
- 10% negative adjustment if below minimum binder requirement
- Stepped adjustment criteria

2013

• **2013**:

- Stepped adjustment criteria changed to continuous
- Air Voids (Va)
 - Max Positive sub-lot Adjustment (2.5%) 3.8% < Va < 4.2%
 - Max Negative sub-lot Adjustment (20%) Va < 2.2% or Va > 5.8%
- Binder Content (Pb)
 - 0% Equal to or above minimum per sub-lot
 - -10% Below the minimum per sub-lot
- Overall adjustment was the average of the sub-lot adjustments

• **2017**:

- No changes for projects < 3500 tons
- PWL implemented \geq 3500 tons
- VMA added as criteria for PWL projects
- Lot adjustment = 0.5 Va + 0.25 Pb + 0.25 VMA

2017

• **2017**:

• Specification limits:

(Non PWL <3500 tons)

2017	LSL	USL
Va	3	5
Pb	Min NMAS/level	
VMA	NA	NA

(PWL \geq 3500 tons)

2017	LSL	USL
Va	2.8	5.2
Pb	Target-0.4	Target+0.4
VMA	Target-1.3	Target+1.3

2017

Mixture Sampling *New!*

2018 Season:

- UCONN CAPLab study sampling at the project site (paver)
- Six projects
- Behind the screed Out of wings Out of paver hopper/MTV

Mixture Acceptance Procedure *Mew!*

2019 Season:

- Department will witness sampling at the project site (paver)
- Split samples to the Contractor and the Department

Mixture Acceptance Procedure - Current Topics

- Project Sampling Method open to options proposed by Contractor
- Reheating samples
- Sample security
- Contractor concerns with technician availability
- Sampling certification/qualification

Reasons for Success

- Strong Industry/Agency partnership
- Support from the FHWA, NEAUPG and others
- Measurement techniques and technology have improved
- Statistically based specifications measure quality more accurately
- Payment adjustments reward good quality control
- Other states procedures and specifications provide invaluable lessons

Summary

- HMA testing has evolved, and will continue to do so, due to improvements in technology and resource reductions.
- More accurate quality data leads to less arguing and more focus on controlling the process.
- DOT/Industry communication must be open, continuous, and attentive.

Thanks!

KEEP CALM AND **ASK** QUESTIONS

KeepCalmAndPosters.com

Bob Lauzon Principal Engineer (Materials) <u>robert.lauzon@ct.gov</u> 860-258-0312

Eliana Carlson Supervising Engineer <u>eliana.carlson@ct.gov</u> 860-258-0325

Jonathan Boardman Supervising Engineer jonathan.boardman@ct.gov 860-258-0327

