

CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

Optimizing Ternary Blended Binders

Seth Wagner, Graduate Student Douglas Cleary, Ph.D., P.E Gilson Lomboy Ph.D., D.Eng

2018 NESMEA Conference, October 16th, 2018

Sponsor

US Army Engineer Research and Development Center - Cold Regions Research and Engineering Laboratory (ERDC - CRREL)

Project Managers

- Danielle Kennedy
- Peter Bly
- Wade Lein

The use of trade, product, or firm names in this document is for descriptive purposes only and does not imply endorsement by the U.S. Government. The tests described and the resulting data presented herein, unless otherwise noted, are based upon work supported by the US Army ERDC-CRREL. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Clinic Students

- Gabrielle Wickizer
- Luke Butler
- Gabriella Aiello
- Thomas Weideli
- Travis Bate
- Sean Pearsall
- Paul Woods

Outline

- Overview
- Compressive strength
- □ Calorimetry
- Concrete mixtures
- □ Application with RCA

Use of SCM

Use of supplementary cementitious materials (SCM) improves properties of portland cement concrete

- Increased strength
- Increased workability
- Reduced heat of hydration
- Reduced permeability

Sustainability

- Reduced carbon footprint of concrete production
- Lower cost of materials

Typical PC replacements

One SCMs and portland cement

- Class F fly ash : 15% to 25%
- Class C fly ash : 15% to 40%
- GGBFS : 30% to 40% (but can be up to 70%).
- Silica fume : up to 5% to 10%

Ternary blended binder

Two SCMs and portland cement

- Tikalsky, P., et al., Development of Performance Properties of Ternary Mixtures: Phase I Report, National Concrete Pavement Technology Center, Ames, IA. 2007.
- Rupnow, T.D., Evaluation of Ternary Cementitious Combinations, Louisiana Transportation Research Center, Baton Rouge, LA, 2012
- Taylor, P., The Use of Ternary Mixtures in Concrete, National Concrete Pavement Technology Center, Ames, IA. 2014.

New Concrete Mixtures Turn Waste into Quality Roads

When WKS the PKOBLEMP Many detiles controlly usel (% and, hags and other supplementary connections) and any detiles controlly used (% and the supplementary connections) and the supplementary of the supplementary of the supplementary Although the body of knowledge is limited, susual states are currently using ternary commentities, combinations for structures and parements, however, we will add with the supplementary of the supplementary of the supplementary control of the reduce the carbon forbyte if by thrulting byproducts of other inductives.

Besarchers investigiated the use of potential tensory micruses incorporating varous combinations and reglacoment levels of SCM and their respective performance. A flactoral was developed consisting of 33 combination of class (F) and, leas F M public, and grade so conditional granulated blast funnace slag. For the concrete study, the frash concrete tests included uhmg, air, unk weight, and study. So concrete tests included uhmg, air, unk weight, and st time. Flacefeed concrete tests included uhmg, air, unk weight, and st time. Flacefeed concrete tests included uhmg, air, unk weight, and st time. Flacefeed concrete tests included uhmg, air, unk weight, and st time. Flacefeed concrete tests included upper strength 14, 28, and 56 days, flexual strength at j and all days, and rapid choirding permanistipar j at 66 days.

From information cited by the American Concrete Institute (AC) and others, there is general agreement that the use of SLMs in associated with these effects on concrete improved workability and finish ability, strength gais, decreased improved resistance to sulfate and chorde attack, increased finese than institute, increased mobiluto of leasticity, restance to the chorde attack, increased mobility of leasticity, restance to the chird gaits and tocorrosin of reinforcing usel, increased time of setting, and unpredictable charge in time between initial and final set.

The LTRC study indicated that cement mixtures containing up to 20% fly ash and slage exhibit concrete test results that are comparable (or better) than those obtained from control mixtures containing no supplemental cement/bious naternals.

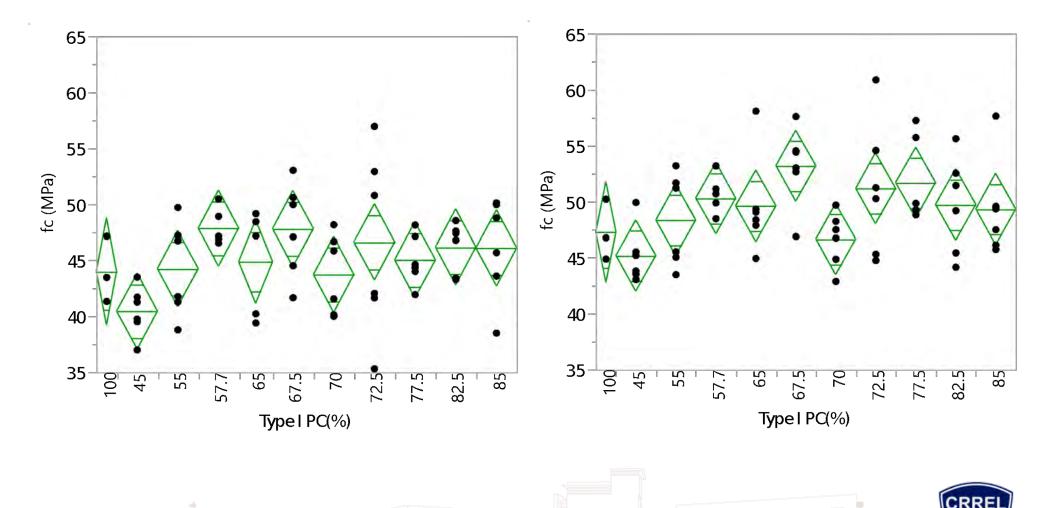
> nd Sale, in bid yeer nikes of concrete construction. Andrand cennent in that quantity of material cost savings

Another benefit of replacing Portland cement with fly aih and slag is a reduced carbon footprint dying production of the cementitious material. Production for each ton of Portland cement for concrete pavement emits or jastonio of carbon dioxide. As byproducts of other industries, emissions due to production of fly ail and slag are negligible from the viewpoint of concrete pavement construction.

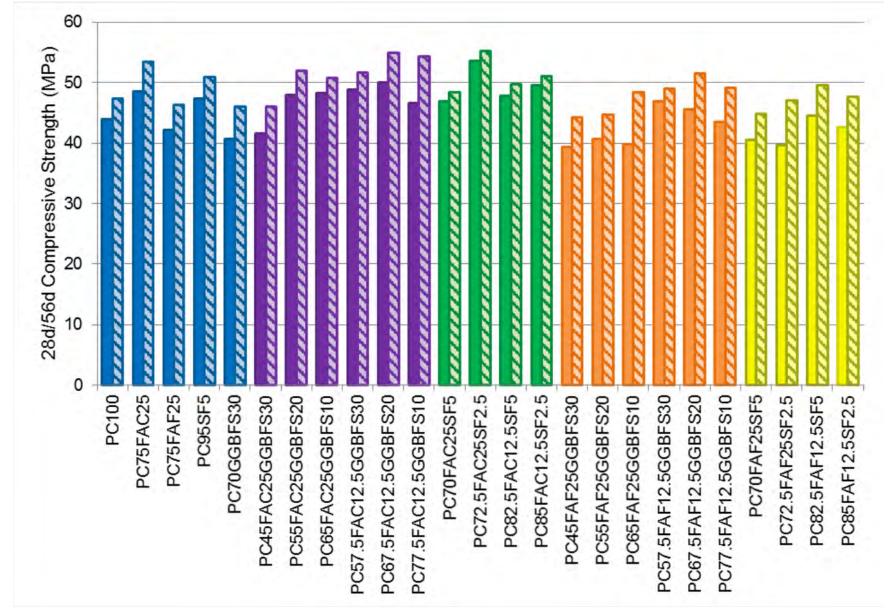
Ternary blend mixtures studied

25 unique mixtures

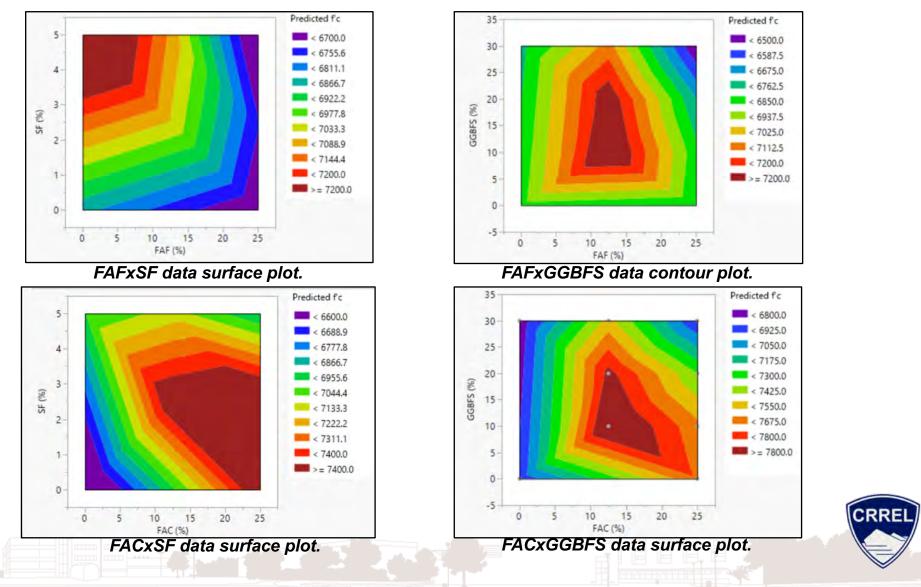
- Silica fume (0, 2.5, 5%)
- Class C fly ash (0, 12.5, 25%)
- Class F fly ash (0, 12.5, 25%)
- Blast furnace slag (0, 10, 20, 30%)
- Includes control (PCC only) and binary mixtures


Cube Compressive Strength

- 2 inch mortar cubes
- Water to binder = 0.45
- Binder to aggregate = 0.5
- 28 & 56 day analysis
- Statistical analysis of SCM strength contribution



Cube Compressive Strength

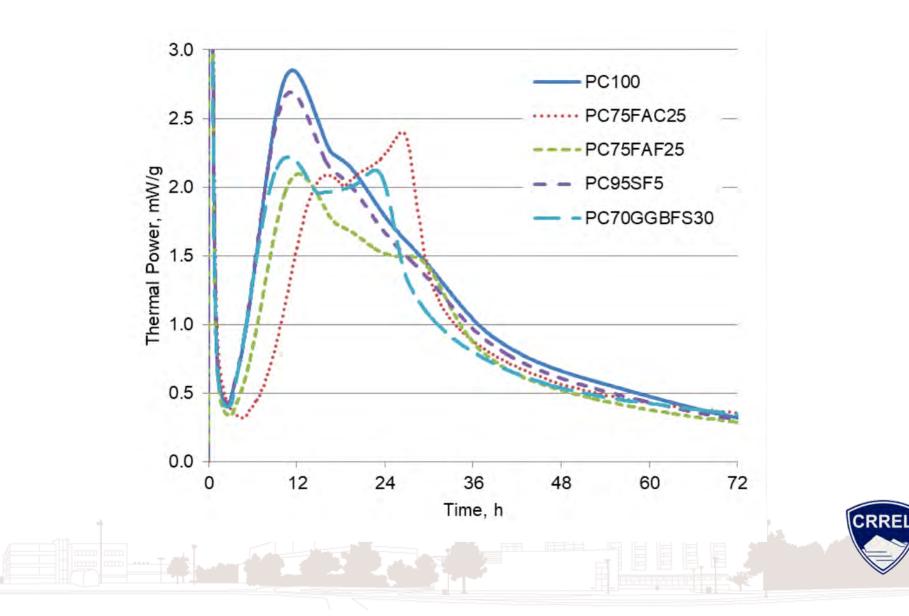


Mortar average compressive strength results for 28 day (solid bars) and 56 day (hatched bars) strength for mixtures tested.

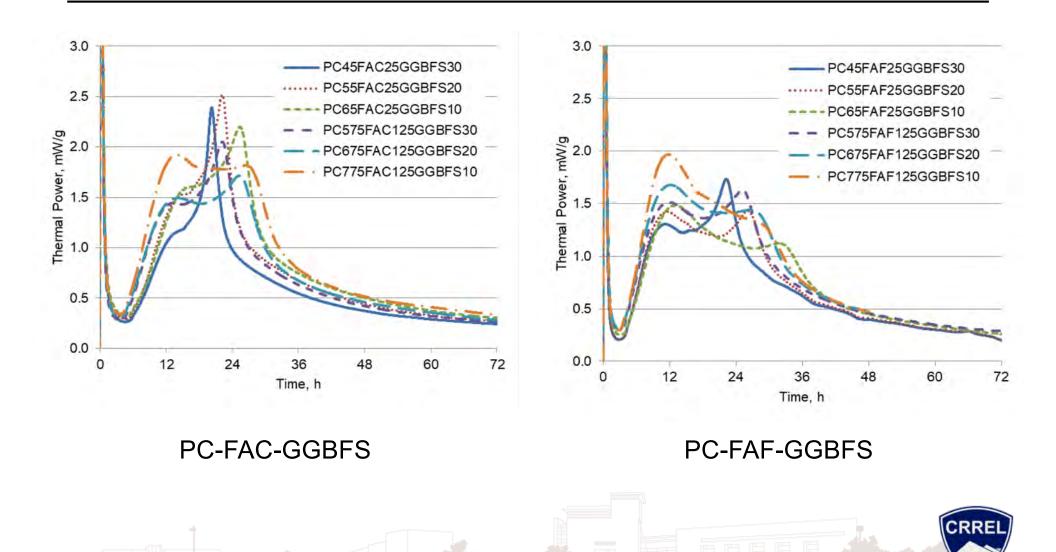
Compressive Testing – Modeling

Compressive Testing – Statistical Analysis

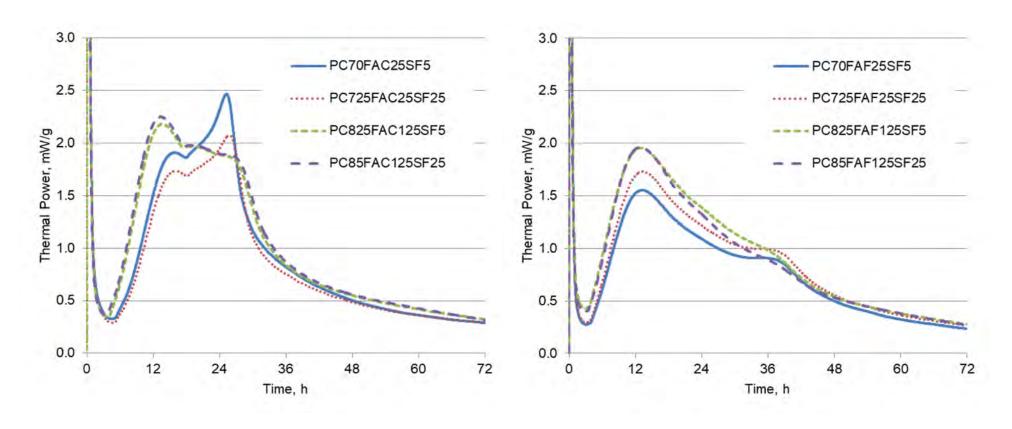
Combination	РС	FAC	FAF	GGBFS	SF	% PC Replaced	Rank By Predicted Replacement 56d		Rank By f'c
		9	% of binde	r			Rate	Strength	
FAF&SF	95		0		5	5	4	7110	4
FAF&GGBFS	77.5		12.5	10		22.5	2	7520	3
FAC&SF	72.5	25			2.5	27.5	1	7923	2
FAC&GGBFS	77.5	12.5		10		22.5	2	8143	1


Calorimetry - ASTM C1702

- 50grams of cementitious material
- water to binder = 0.50
- 20°C for 72 hours
- Cumulative heat of hydration (Joules) and power (Watts/gram cement) were recorded

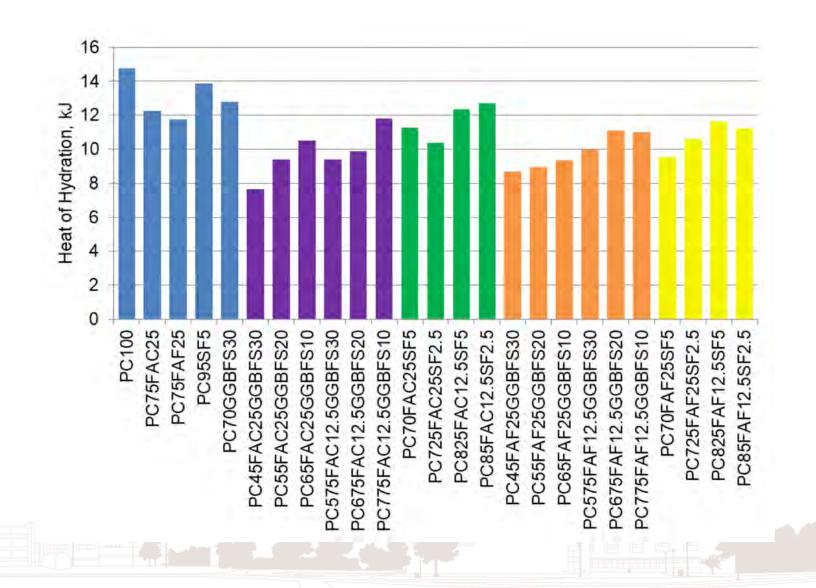


Type I cement and binary binders



PC + Fly Ash + GGBFS

PC + Fly Ash + Silica Fume


PC-FAC-SF

PC-FAF-SF

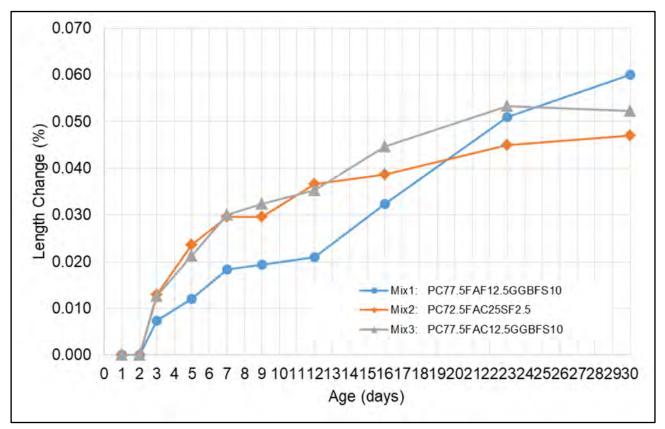
Heat of Hydration

CRRE

Ternary Binder Concrete Mixtures

	PC77.5FAF12.5G GBFS10 Mix 1	PC72.5FAC25SF2. 5 Mix 2	PC77.5FAC12.5GG BFS10 Mix 3
Cement, Ib	344.7	415.8	405.3
Fly Ash, lb	74.9	148.5	90.1
Slag, Ib	179.9		105.1
Silica Fume, Ib		29.7	
Water, Ib	269.8	267.3	270.2
Sand, Ib	1459.2	1459.2	1459.2
Natural Agg, Ib	1542.8	1542.8	1542.7
AEA, fl oz/cwt	1.8	2.2	2

Test three concrete mixtures with different ternary binders

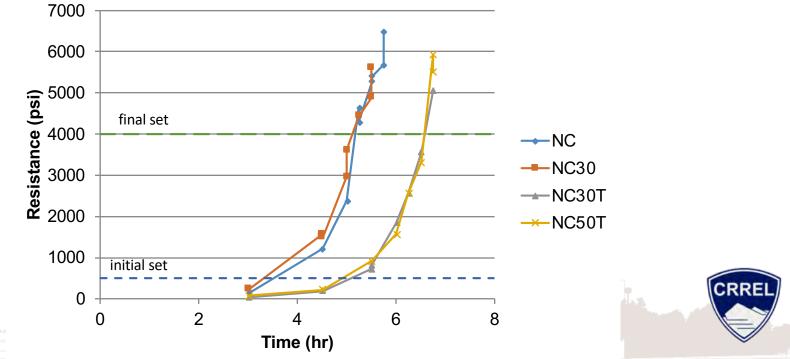


Ternary Binder Results

	Mix 1	Mix 2	Mix 3
	PC77.5FAF12.5GGBFS10	PC72.5FAC25SF2.5	PC77.5FAC12.5GGBFS10
Fresh Properties			
Slump (in)	1.0	1.5	1.25
Air Content, %	5.50	5.50	5.00
Unit Wt. (pcf)	148.36	148.66	143.60
Mix temp (°F)	65	65	65
Hardened Properties			
Compressive strength, 3d (psi)	4189	3493	3231
7d	4309	4396	3892
14d	4953	4535	4438
28d	5037	5061	5426
56d	5528	5659	5686
Electrical Resistivity, 3d (k Ω /cm)	9.5	6.6	7.6
7d	14.1	11.4	10.8
14d	17.0	11.8	16.5
28d	23.2	17.8	21.9
56d	25.6	25.8	25.1

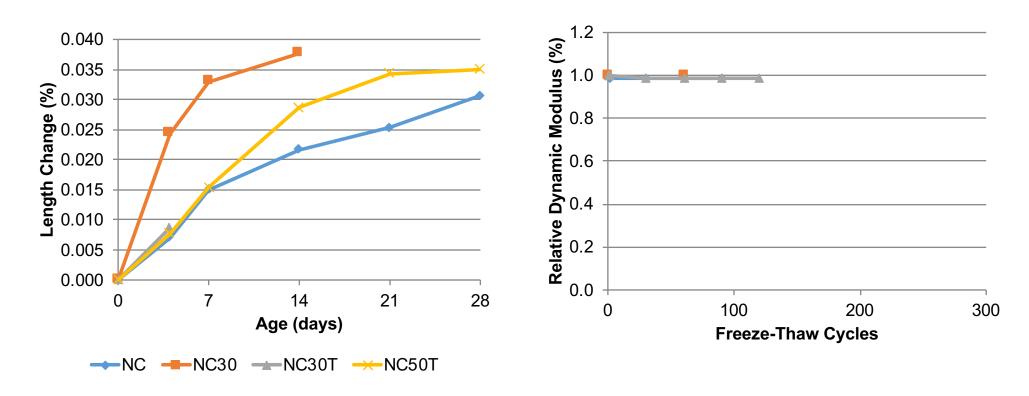
Ternary Binder Results

Alkali-silica reaction test results.


RCA Concrete Mixtures

	Mix 4 NC	Mix 5 NC30	Mix 6 NC30T	Mix 7 NC50T
Cement, Ib	656.0	656.0	502.3	502.3
Fly Ash C, lb	-	-	81	81
Slag, Ib	-	-	64.8	64.8
Water, Ib	262.4	262.4	259.3	259.3
Sand, Ib	1455.4	1455.4	1455.4	1455.4
Natural Agg, Ib	1538.7	1077.1	1077.1	769.4
RCA, Ib	-	415.0	415.0	691.6
AEA, fl oz/cwt	4.0	4.0	4.0	4.0
HRWR, fl oz/cwt	-	2.90	3.05	6.75

	Mix 4	Mix 5	Mix 6	Mix 7
	NC	NC30	NC30T	NC50T
Fresh Properties				
Slump (in)	1.25	1.0	1.0	0.75
Air Content, %	6.0	6.0	6.0	7.0
Unit Wt. (pcf)	145	146	146	142



	Mix 4	Mix 5	Mix 6	Mix 7
	NC	NC30	NC30T	NC50T
Hardened Properties				
Compressive strength, 3d (psi)	3894	4984	4152	4714
7d (psi)	4700	5351	5069	5662
14d (psi)	5030	5942		6238
28d (psi)	5291			6571
Elastic Modulus, 3d (ksi)	7217	7416	7916	8415
7d (ksi)	7910	7798	8828	8983
14d (ksi)	7837	7929		8779
28d (psi)	8896			8145
Electrical Resistivity, 3d (kΩ/cm)	7.9	8.4	6.8	6.2
7d (kΩ/cm)	9.9	9.9	9.6	7.9
14d (kΩ/cm)	11.3	12.7		10.8
28d (kΩ/cm)	13.7			14.5
Modulus of Rupture, 28d (psi)	990			1013

CRREI

Mix 4-7 drying shrinkage results.

Mix 4-7 freeze thaw results.

Conclusions

- Blends with FAC/FAF & GGBFS stronger up to 55/57.5% replacement
- Blends with FAC & SF do not produce strengths higher than other ternary/binary options
- <55% PC may decrease mean strength in blends
- SCM tend to reduce peak heat and total HoH
- Optimal blend for low HoH = 25% FAC, 2.5% SF
- Optimal blend for max strength = 12.5% FAC, 10% GGBFS

THANK YOU!

Objectives

- Design concrete pavement mixtures with RCA using ternary blends of cementitious materials and low w/b;
- Measure fresh and hardened concrete properties;
- Assess the long-term performance of the RCA concrete

Task 2: Materials Identification & Mix Design

- Aggregates
 - grading, geometry, density, absorption
- Cementitious Materials
 - Type I Portland cement, Class C fly ash, ground granulated blast furnace slag, and silica fume.
- Chemical admixtures
 - air entraining admixture, water reducer, and hydration stabilizer

Task 3. Lab Testing of Fresh & Hardened Concrete

Mix	Designation	Description of concrete mixture				
No						
Ternar	Ternary binder mixtures					
1	TB1	NC with one type of ternary blended binder				
2	TB2	NC with another type of ternary blended binder				
3	ТВЗ	NC with a third type of ternary blended binder				
RCA pa	avement concret	e mixtures				
4	NC	Normal concrete				
5	NC30	NC with 30% replacement with RCA				
6	NC30TB	NC30 with ternary blended binder				
7	NC50TB	NC with 50% replacement with RCA, with ternary binder				
8	НРС	High performance concrete				
9	HPC30	HPC with 30% replacement with RCA				
10	НРСЗОТВ	HPC30 with ternary blended binder				
11	НРС50ТВ	HPC with 50% replacement with RCA, with ternary binder				

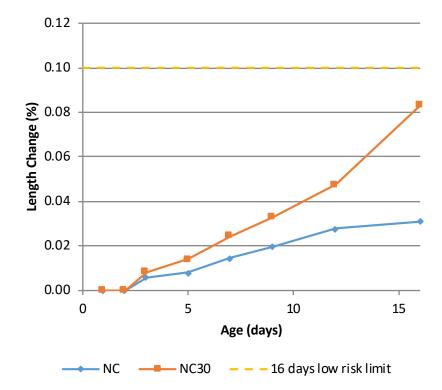
• Test three concrete mixtures with different ternary binders identified in Task 2

Tests to be conducted

RowanUniversity CENTER FOR RESEARCH & EDUCATION IN ADVANCED TRANSPORTATION ENGINEERING SYSTEMS

Property	Test Method	Mix 1-3	Mix 4-11
Fresh Concrete Properties			
Slump	ASTM C143 / AASHTO T 119	\checkmark	\checkmark
Air content	ASTM C231 / AASHTO T 152	\checkmark	\checkmark
Unit weight	ASTM C138 / AASHTO T 121		\checkmark
Setting time	ASTM C403 / AASHTO T 197		\checkmark
Air void system, AVA	AASHTO T 348	\checkmark	\checkmark
Hardened Concrete Properties			
Compressive strength (3,7,28,56d)	ASTM C39 / AASHTO T 22	\checkmark	\checkmark
Electrical resistivity	ASTM C1760 / AASHTO T95	\checkmark	\checkmark
Modulus of rupture (28, 90 days)	ASTM C78 / AASHTO T 97		\checkmark
Elastic modulus (3,7,28,56 days)	ASTM C469		\checkmark
Drying Shrinkage	ASTM C157 / AASHTO T 150		\checkmark
Resistance to cyclic F-T	ASTM C666/ AASHTO T 161		\checkmark
Alkali-Silica Reaction	ASTM C1293	\checkmark	\checkmark

Ternary blend with RCA



Mix No	Designation	Description of concrete mixture		
	y binder mixture	S		
1	TB1	NC with one type of ternary blended binder		
2	TB2	NC with another type of ternary blended binder		
3	ТВЗ	NC with a third type of ternary blended binder		
RCA pa	RCA pavement concrete mixtures			
4	NC	Normal concrete		
5	NC30	NC with 30% replacement with RCA		
6	NC30TB	NC30 with ternary blended binder		
7	NC50TB	NC with 50% replacement with RCA, with ternary binder		
8	НРС	High performance concrete		
9	HPC30	HPC with 30% replacement with RCA		
10	НРСЗОТВ	HPC30 with ternary blended binder		
11	НРС50ТВ	HPC with 50% replacement with RCA, with ternary binder		

• Test NC and HPC with ternary blend and increasing recycled concrete aggregates

Mix 4-5 ASR results.

