

SHRP2– Service Life Design of Bridges (R19A)

Goals of Maine's R19A Participation

- Save \$ bridges that last longer and require less maintenance
- Reduce user impacts
- Balance the life of bridge components

Meeting Our Goal

- Service Life Design Guide -R19A Lead Adopter State
 - A more scientific approach
- State-of-the-art materials
 - Reinforcing
 - Coatings
 - Composites
- Learning from the past
 - Bridge type selection
 - Better concrete
 - Jointless bridges
 - Better drains

Extending the Service Life of Bridges in Maine

Jonesport-Beals Bridge

- Environmental Challenges
- Detailing and Design- deemed to satisfy
- SHRP2 Grant Recipient Lead Adopter State
 - Durability Review & Consultation
 - Testing Work Plan- Study

Concrete Durability Study

- Objectives
- Evaluate Source Materials
- Existing Bridge- What can we learn
- Laboratory Work
 - MaineDOT Mix properties
- Learning Outcomes

Plan View

Corrosion Threat Mitigation

- Steel corrosion- failure mechanism in concrete bridges
- Early design avoid corrosion
 - Avoidance Detailing Practices
 - Deck end and joint details
 - Encased beam ends
 - Increased Clear Cover
 - Beams

aineDOT

- Zero tension under service conditions
- Clear protective coating
- Targeted approach to rebar
- MaineDOT Standard Specifications
 - Low permeability concrete mixes
 - Reduction of concrete cracks
 - Addition of dci-s as applicable
 - ASR Mitigation- Risk Assesment

Corrosion Regions & Design Options

Superstructure

Details (Bridge Joint)

Deicing Zone

Column & Cap

Atmospheric

Plinth Section

Splash/Tidal Zone

Submerged Zone

Existing Bridge Testing

Testing Work Plan

- Validate 100-year design life
- Design Basis
 - Past Performance
 - Engineering Judgment
 - Environmental characterization
- Chloride Ingress Rate
 - Collect Existing Bridge Data
 - Modeling for Proposed
- Reduce Cracking
 - Freeze Thaw
 - Shrinkage
 - Mass Concrete Thermal
 - Alkali-Silica Reactivity
 - Test Aggregate Sources
 - Mitigate Potential

Concrete Durability Testing Work Plan

Jonesport-Beals-Beals Island Bridge No. 5500 WIN # 22626.00 Beals – Moosabec Reach, Maine

Concrete Durability Study- Objectives

- Learn more about Maine's concrete and its raw material sources.
- Alkali Silica Reactivity (ASR)- i.e. Bangor I-395, I-295 Concrete Pavement- closer look
- Service Life Prediction Models
 - Calibration parameters for Maine
 - fib Bulletin 34 R19A or
 - ACI Life 365
- The Study may be used to develop guidance for the design of future Forever Bridges and Inventory Bridge.

Concrete Durability – Field Work

- Environment Characterization
 - Existing pier has performed well
 - Cover survey
 - Core samples
- Chloride profile ASTM C1152
 - Surface Chloride concentration as a function elevation.
 - Measure the chloride ingress depth
 - ASTM 1556 Diffusion Coef.
- Petrographic Analysis ASTM C856
 - air content, asr, aggregates, etc. etc.
- Field monitor internal and external concrete temps during curing.

Existing Pier Elevation

Concrete Durability – Evaluate the Past

- Calibrate Service Life Variables
 - Chloride Ingress
 - Cover survey
 - Core samples

Existing Pier Elevation

Corrosion Regions & Design Options

Existing Surface Chloride Concentration

Chloride Concentration at 3-inch Depth

Corrosion Threat Regions at Piers

Corrosion Mitigation at Piers

Corrosion Mitigation at Piers

Concrete Durability- Laboratory Work

- Mass Concreting
 - Concrete maturity In-situ strength, used for thermal modeling
 - Splitting tensile test
 - Elastic modulus
 - Concrete shrinkage
 - Coefficient of thermal expansion
 - Semi-adiabatic temperature rise- aka "The Cube"
- Chloride Ingress Rates (R19A)
 - Bulk diffusion
 - NT Build (no corrosion inhibitors)
- Super Air Meter– air bubble sz. & volume

- ASR Evaluation- ASTM C1260, ASTM C1567, and ASTM C1778
 - Standard of care for design with marginal aggregate sources, and is particularly relevant given reactive aggregates present in Maine's quarries

Results

- ASR Decision Matrix
 - ASTM C1778 Standard Guide for Reducing the Risk of ASR
 - Outcome: Switched to Low Alkali
 Cement (McInnis)
 - 50% Slag Cement
- Diffusion Coefficient Testing
 - ASTM C1556 Bulk Diffusion
 - NT Build 492 Migration
- Temperature monitoring of mass placements during construction

Maturity Results

Chloride Surface Concentration

Surface concentration is determined by taking a curve-of-best-fit to the data gathered from concrete cores, and projecting back to the surface. In the example below, Cs is given as 5000ppm.

Chloride Surface Concentration

Surface concentrations are found for every sample:

			Class A			
					Std	
Zone	Elevation	Cs (ppm)*	%/mass	Mean	deviation	COV
Deicing	Deck A	3000	1.89945	2.11	0.00	0.09
Deicing	Deck B	3500	2.216025			
Deicing	Deck C	3500	2.216025			
Airborne	15.92	4000	2.5326	1.82	0.00	0.33
Airborne	17.83	3300	2.089395			
Airborne	22.25	3500	2.216025			
Airborne	26.33	3000	1.89945			
Splash	9.5	4500	2.849175	2.43	0.00	0.20
Splash	11.5	4000	2.5326			
Splash	14.42	3000	1.89945			
Tidal	-4	5000	3.16575	3.96	0.00	0.28
Tidal	-2.5	7500	4.748625			

GFRP/SS/Epoxy dci-s

Mild Steel Add cover 3" dci-s

Stainless Steel Add cover 6" 1" Casing

> Mild Steel Add cover 6" 1" Casing

Chloride Surface Concentration

GFRP/SS/Epoxy dci-s

Mild Steel Add cover 3" dci-s

Stainless Steel Add cover 6" 1" Casing

Mild Steel Add cover 6" 1" Casing

Chloride Diffusion Coefficient

Data from CTL Bulk Diffusion-ASTM 1556 -Class A

Mid-Layer Depth,	Cm, %	Cm, %	Cm, %	Cc, %	Cc, %	Cc, %
mm	A-BD - 1	A-BD - 2	A-BD 3	A-BD - 1	A-BD - 2	A-BD 3
0.5	1.352	1.239	1.343	1.328	1.127	1.532
1.5	1.5 0.820 0.605 1.090				0.603	1.092
2.5	0.422	0.254	0.720	0.434	0.260	0.718
4.0	0.141	0.063	0.330	0.129	0.051	0.327
6.0	0.023	0.013	0.077	0.021	0.009	0.086
8.0	0.010	0.006	0.020	0.010	0.007	0.019
10.5	0.008	0.006	0.012	0.009	0.007	0.006
14.0	0.010	0.005	0.008	0.009	0.007	0.005
55.0	0.009	0.007	0.005	0.009	0.007	0.005
Exposure time, t, d	lays			35	35	35
Initial Chloride Co		0.009	0.007	0.005		
Surface Chloride Content, C _s , %					1.43	1.76
Apparent Chloride Diffusion Coefficient, D _a , m ² /s (x10 ⁻¹²)					0.6	1.5
Apparent Chloride Diffusion Coefficient, D _a , in²/yr					0.03	0.07

ASTM C1556-11a(2016) Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion

Service Life Prediction- Columns

Mild Steel with 3" cover & dci-s

Chloride Migration Coefficient

 Data from CTL NT Build Results shows the migration coefficient of the SAHK-18-2-A concrete mix.

7	ROOP		
	Vanasee Hangen Brustlin, Inc. (VHB)	CTL Project No:	056233
	Jonesport Beals Island	CTL Project Mgr.:	J. Pacheco
	Robert Blunt	Approved:	J. Vosahlik
and the second second	M	Bata Analysis de	Read on once

NT Build 492, Predicting Chloride Penetration of Hydraulic Cement Concrete by the Rapid Migration Procedure

stea	ady state	Spatrane IB	Fide			Per	etration Dep	the			Average F	Penetration	Rate of P	enetration
ration	coefficient	SAHK-T8-2-A 1 -	#1A	19.7	18.4	18.2	31.0	32.1	22.5	18,1	2	2.8	0.	331
x10 ^{~°}	in*/s		#18	19.9	24.7	18.7	26.9	31.3	24.0	16.7	23	3.2	0,	132
16.2		SAHK-18- 2-A 2 -	#2A	9.0	24.6	23.9	19.8	17.3	18.3		18	8.8	0.	126
	10.5		#20	15.2	14.0	16.8	20.0	13.6	15.1	19.2	14	6.3	0.	022
		SAHK-18- 2-A 3 -	#38	15.3	16.0	14.2	13.2	12.6	15.0	14.9	1	4.5	0.	320
6	13.4	Specimen ID	Side	Cast Date	Age of specimen Days	Thickness mm	Initial Current mA	Initial Temp °C	Final Current mA	Final Temp °C	Applied Voltage hr	Applied Voltag V	Non ste x10 ⁻¹² m ² /s	x10 ⁻⁸ in ² /s
	13.4	Specimen ID SAHK-18- 2-A 1 -	Side #1A	Cast Date 2/19/2019	Days 28	mm 50.0	mA 48.1	°C	mA 44.1	°C 21.9	hr 24	V 30	x10 ⁻¹² m ² /s 10.5	x10 ⁻⁶ in ² /s
	13.3		#18										10.7	16.6
		SAHK-18- 2-A 2	#2A	2/19/2019	28	50.4	43.5	21.5	40.7	22.0	24	30	8.6	13.4
	11 /		#3A									-	7.4	11.4
· ·	1.4	SAHK-18- 2-A 3 —	#38	2/19/2019	28	50.3	45.5	21.7	41,4	22.0	24	30	6.5	10.0
	10.0					34	G		8		5 S	Aver ge	8.7	13.5
10	.0	Notes:												
		1. The tast samples v 2. Samples were saw 3. Specimens were c	were fabric v cut from 4 ured upon	ated on Febr 1x8-inch cylin being fabrica	uary 19, 201 der specime ited at 73°F	9 by others a ins. in limewater u	nd delivered Intil testing.	to CTLGrou	up in a moist c	condition.				

fib Bulletin 34 Chloride Ingress Model

Input Parameters STRATEGIC HIGHWAY RESEARCH PROGRAM

•				Normal Distr Coefficients		Log-Normal	Distr Coeffs	Beta		tr Coeffs		
						Coeff of	$\ln \mu - \ln((\sigma/\sigma))$	$(\mu)^2 + 1)/2$				
			Distribution			Variation,	$\ln(($	$\sigma/\mu)^2 + 1)$	Lower	Upper		
Parameter	Description	Units	Function	Mean, µ	Std Dev, σ	σ/μ	•		Bound, a	Bound, b	α	β
		in²/yr		0.426	0.085	0.20						
	Chloride Migration Coefficient (from Nordtest NT Build	mm²/yr		274.8	55.0							
D _{RCM,0}	492 - results are given in m ² /sec)	m²/sec	Normal	8.71E-12	1.74E-12							
b _e	Regression variable, (limited to 3500 °K to 5500 °K)	°К	Normal	4800	700							
		°F		44.5	1.30							
		°C		6.9	0.72							
T _{real}	Temperature (from Local Weather Data)	°К	Normal	280.09	0.72							
		°F		67.6								
		°C		19.8								
T _{ref}	Standard test temperature	°К	Constant	292.9								
k _e	Environmental transfer variable	n/a	n/a									
k _t	Transfer parameter	n/a	Constant	1.0								
α	Aging exponent - PCC w/ Blast Furnace Slag	n/a	Beta	0.45	0.2				0	1	2.33	2.85
to	Reference point of time (28 days = 0.0767 yrs)	yrs	Constant	0.0767								
A(t)	Aging function	n/a	n/a									
Co	Initial Chloride Content of Concrete	mass% of binder	Normal	0.04	0.00	0.013						
	Chloride Concentration at surface, or at substitute											
$C_s \text{ or } C_{s,\Delta x}$	surface Δx	mass% of binder	Log-Normal	2.40	0.96	0.40	0.8	0.39				
		in		0.35	0.22	0.629			0	1.97	1.90	8.77
Δx	Transfer function - splash/spray zone	mm	Beta	8.90	5.60				0	50	1.90	8.77
		in		3.00	0.50	0.167						
cover, a	Concrete cover	mm	Log-Normal	76.20	12.70		4.32	0.17				
C _{crit}	Critical chloride content (0.25% plain reinforcing)	mass% of binder	Beta	1.65	0.4125	0.25			0.75	1.9	0.25	0.07
t _{SL}	Design service life	yrs	n/a	100								
β	Target Reliability	n/a	n/a	1.3								

100 yr Results for Chloride Ingress Model

SHRP2SOLUTIONS

Total Passing	4981
Total # of Trials	5000
Reliability	1.00
P _f , Probability of failure	0.00
β, Reliability Index (calculated)	2.669Passes
β, Target Reliability Index	1.3

Total Passing	4771
Total # of Trials	5000
Reliability	0.95
P _f , Probability of failure	0.05
β , Reliability Index (calculated)	1.687Passes
β, Target Reliability Index	1.3

Monte Carlo Trial Results:

• ASTM C1556 Diffusion Coef. Used:

• NT Build Migration Coef. Used:

Concrete Durability Study- Outcomes

- Environmental Characterization Marine Exposure Zones
- Detailing Practices
- Alkali Silica Reactivity (ASR) ASTM C1260/C1567/C1778
 - Evaluate material sources and determine project ASR risk profile
- Freeze Thaw Durable
- Mass concrete can handle 70 degree differential
- Service Life Prediction Calculations
 - Calibration parameters for Maine Concrete
 - fib Bulletin 34 R19A
 - ACI Life 365- complete

Service Life Design in Maine

- Bridge Design Guide Revisions
- Service Life Calculations?
- NCHRP 12-108
 - Guide Specification for Service Life Design of Highway Bridges
- Expand Conc Mix Standard Specifications
- Similar to other states, Maine can develop performance requirements for DB & CMGC

Future Specifications For Maine

TABLE 2.3.B CHLORIDE MIGRATION REQUIREMENTS									
			OPC + 20-40% FA	OPC + 36- 65% GGBS	OPC + 66- 80% GGBS ¹				
Exposure Zone	Structural Element	Minimum cover ² [in]	Max. mean Chloride Migr Minimum cover ² NT Build 492 [in]						
	Towers, pier caps, pier columns, abutments		14.1	3.4	s] 4.9				
De-icing salt	Deck (Not covered by PPC system)	3.0	11.3	2.7	4.0				
spray	Deck covered by PCC system	2.75	2.75 11.3 2.7		4.0				
	Concrete barriers	2.75	12.4	3.4	4.6				
	Towers, pier columns	3.0	15.0	11.0	12.0				
Atmospheric	Pier caps	2.0	15.0	11.0	12.0				
	Deck (Underside)	1.5	11.3	2.7	4.0				
Splash	Towers, pier caps, pier columns	3.0	15.0	51	7.1				
opiaar	Pile caps	4.0	15.0 5.1						
Submerged	Concrete plug for piles	2.5	15.0	5.8	8.3				
Suomergeu	Concrete plug for piles	3.0	15.0	8.5	12.0				
Embedded	Abutments	3.0	15.0	8.5	12.0				
Enlocadea	Drilled shaft	5.0	10.0	0.5	12.0				

