

Measuring the Chloride Content of Bridge Deck Core Using XRF

Derek Nener-Plante, M.S., P.E.

Northeastern States Materials Engineers' Association Portland, Maine October 21, 2019

XRF Advantages and Limitations

Advantages

- Pre-calibrated for a wide range of elements
- Automatic reading—no analysis experience required
- 1-3-minute testing time
- Little or no sample prep required
- No maintenance required costs only associated with equipment acquisition (\$35-\$40K)
- Several applications possible in addition to the paint testing (more bang for your buck)

Limitations

- Can only be used by certified personnel
- Upper and lower limits different calibrations needed for trace metals vs. ores (just a cost consideration)

SHRP2 R06B—MaineDOT

- MaineDOT goals for R06B:
 - Maximize non-destructive testing
 - Reduce test time and cost
 - Reduce incorporation of out-of-spec material into DOT work

Chloride Content – Bridge Deck Cores

New Portland - - Bridge #3166 Ref. No. 300482 Core #2 STA 0 + 15 1.5' Right

3004

Concrete cores pulverized and analyzed for chloride content ~ rebar corrosion begins at 1.35lb/cy or 0.03%

Chloride Content – Bridge Deck Cores

- Current method: AASHTO T 260 (Gran Plot Method)
 - Requires nitric acid and silver nitrate
 - Numerous steps
 - 10 tests/day
- XRF method
 - No chemicals
 - 25+ tests/day
 - Less training required

XRF for Chloride Content Initial Experiment

- Split-sample comparison on two types of samples:
 - Concrete Cores
 - Pellets from Pulverized Cores
 - Evaluated numerous binding agents for pelletized samples, XRF settings, direct measurement of concrete
 - Selected the settings that provided the best correlation on a limited amount of measurements vs. titration values
 - Expanded population of comparison

ltem	Levels	Details		
Analysis Mode	1ode3AllGeo and Two Mining Modes			
Time Breakdown	Breakdown 2 5/5/5/45 & 15/15/15/15			
Binding Agent	6	None and 5 recommended agents		
Binding %	2	2 5% & 10%		
Replicates 3 Tl		Three measurements on each pellet		

XRF for Chloride Content Surface Testing of Core Slices

a

h

- Top, bottom, edge of slice
- Average of all readings v. Titration

XRF for Chloride Content Surface Testing of Core Slices

- General trend exists but significant drawbacks
- Technician discretion to avoid exposed aggregate
- Higher variability in measurements

Pulverized & Pelletized Specimens

XRF for Chloride Content Pellets from Cores

Mode/Range @ 60 Sec.	Binding Agent	% Binding Agent	R ²	Coefficient
Mining Ta/Hf 5/5/5/45	A	5	0.996445	1.091516
AllGeo 5/5/5/45	В	5	0.996009	1.142771
Mining Cu/Zn 5/5/5/45	A	5	0.995589	1.078925
AllGeo 5/5/5/45	None		0.99518	0.993099
Mining Ta/Hf 5/5/5/45	В	5	0.994987	1.145006
AllGeo 5/5/5/45	A	5	0.99459	1.084792
AllGeo 5/5/5/45	С	10	0.994295	1.082809
Mining Ta/Hf 5/5/5/45	A	10	0.994101	1.065355
Mining Cu/Zn 5/5/5/45	None		0.993977	0.985461
AllGeo 5/5/5/45	A	10	0.993585	1.061301
Mining Cu/Zn 5/5/5/45	A	10	0.993433	1.06045
AllGeo 5/5/5/45	С	5	0.993298	1.031429
Mining Ta/Hf 5/5/5/45	D	10	0.992926	1.008566
Mining Cu/Zn 15/15/15/15	A	5	0.992883	1.129886
Mining Cu/Zn 5/5/5/45	В	5	0.992812	1.144496
Mining Cu/Zn 15/15/15/15	E	5	0.992806	1.053816
Mining Cu/Zn 5/5/5/45	E	5	0.992745	1.045713
Mining Ta/Hf 5/5/5/45	None		0.992719	0.973055
Mining Cu/Zn 15/15/15/15	С	10	0.992453	1.051661
Mining Ta/Hf 5/5/5/45	С	10	0.992397	1.102904
Mining Cu/Zn 15/15/15/15	A	10	0.992358	1.034796

- Nearly all combinations showed excellent correlation
- Selected the simplest configuration with no binding agent

Split Sample Comparison

Split Sample Comparison

Model Validation

Model Validation

XRF for Chloride Content Initial Findings & Challenges

- Pellets of pulverized material superior to surface readings of slices
- No binding agent required
- Correlation between titration and XRF reading excellent

Next Steps in Investigation

- Testing of lab-prepared reference samples
- Investigate the stability of measurement of chloride content with time due to concerns about "drift"

XRF for Chloride Content Lab-Prepared Reference Samples

- Most elements detected with XRF have known standards and references – used as a quality check
- No known available standards for chlorine since it is a lighter element
- All data comparisons have been between XRF and titration – <u>but how does it predict actual chloride</u> <u>content?</u>
- Reference concrete samples with known chloride contents fabricated in the lab (0%, 0.01%, 0.02%, 0.03%, 0.04%)
 - Tested via XRF and AASHTO T 260

Actual vs. XRF

Actual vs. Titration

0.045 (%) 0.04 0.035 0.02 0.02 0.02 0.015 0.01

Titration vs. XRF

XRF for Chloride Content Repeatability of Measurements Over Time

 All data comparisons have been between XRF and titration – <u>but how stable is the measurement of</u> <u>the pellet?</u>

Chloride Content Over Time

Avg. % Chloride by XRF

Chloride Content Over Time

XRF for Chloride Content Where are we now?

- Need to resolve the time dependence of the pellets
 - May need to develop guidance on a time limit to test pellets within
- Looking into higher grade equipment with better resolution for the lighter elements
 - Action limit is so low compared to typical measurements
 - Hand-held model may not be the best piece of equipment for the use
- Still running titrations and XRF in parallel but would like to transition away from titrations soon

Questions?