NESMEA 2009

Resistivity of Water Saturated Concrete as an Electrical Indicator of its Chloride Penetration Resistance

> Mario Paredes, P.E. Corrosion Research Engineer Florida Department of Transportation State Materials Office

Presentation Objectives

- Describe the Rapid Chloride Permeability Test (ASTM C1202)
- Describe the Surface Resistivity Test (FM 5-578 SR)
- Relationship Between RCP and SR.
- Describe the Bulk Diffusion Test.
- Relationship Between SR and BD.
- SR Behavior of Select Mixes
- Conclusions

Cut 1st Day of Test 26th Curing Day

Epoxy Slice 1st Day of Test 26th Curing Day

The RCP Test

Desiccate 2nd Day of Test 27th Curing Day

Cell Formation 3rd Day of Test 28th Curing Day Perform Test 3rd Day of Test 28th Curing Day

Surface Resistivity Test

FM 5-578

Surface Resistivity Test

Test measures the resistivity of the void system full of water.

Relationship SR vs. RCP

FDOT Field Samples RCP vs SR 28 day Correlation

SR vs RCP Values

|--|

Chloride Ion Permeability	RCP Test Charged Passed (coulombs)	Surface Resistivity Test		
		4" X 8" (KOhm-cm) Spacing 1.5"	6" X 12" (KOhm-cm) Spacing 1.5"	Real
High	>4,000	< 12	< 9.5	< 6.7
Moderate	2,000-4,000	12 - 21	9.5 - 16.5	6.7 - 11.7
Low	1,000-2,000	21 - 37	16.5 - 29	11.7 - 20.6
Very Low	100-1,000	37 - 254	29 - 199	20.6 - 141.1
Negligible	<100	> 254	> 199	> 141.1

Precision of Methods

Single-Operator Precision:

- SR The single operator coefficient of variation = 6.3%
- RCP The single operator coefficient of variation = 12.3%

Diffusion Test Bulk Diffusion (NT Build 443)

Cylinder is sliced at 364 (1 year) or 1092 (3 years) days of exposure for Chloride analysis.

Each slice is ¼ in thick

Chloride Profile

Chloride Profile

Analysis of Chloride Profile

$$C(x,t) = C_s - (C_s - C_i) erf\left(\frac{x}{\sqrt{4Dt}}\right)$$

$$\mathcal{C}(\mathbf{x}, \mathbf{a}) := \begin{bmatrix}
a_2 - (a_2 - C_i) \cdot \operatorname{erf}\left(\frac{\mathbf{x}}{\sqrt{4 \cdot a_1 \cdot t}}\right) \\
\frac{1}{2} \cdot \frac{a_2 - C_i}{2} \cdot \exp\left(\frac{-1}{4} \cdot \frac{\mathbf{x}^2}{a_1 \cdot t}\right) \cdot \frac{\mathbf{x}}{\frac{1}{2}} \\
\pi^2 & a_1 \cdot (a_1 \cdot t)^2 \\
1 - \operatorname{erf}\left(\frac{\mathbf{x}}{\sqrt{4 \cdot a_1 \cdot t}}\right)
\end{bmatrix}$$

28 Day SR vs. 364 BD

SR vs. 364 BD Correlation

91 Day SR Correlation to 1 & 3 year BD

SR vs. BD Correlation Coefficient

<u>Conclusions</u>

SR can be used as an electrical indicator of concrete chloride penetration resistance.

- Can be used as a QC test provided that its relationship to diffusion has been studied.
 - Concretes SF or Metakaolin could be tested at 28 days of curing age.
 - Concretes with FA or Slag at 91 or later.

 Diffusion of laboratory samples is one order magnitude higher than field samples.

Questions?