Concrete Solutions to Storm Water Runoff

Presented By: Jonathan Kuell, Executive Director:

NORTHERN NEW ENGLAND CONCRETE PROMOTION ASSOCIATION
Topics of Discussion

- Properties of Pervious Concrete
- Applications
- Benefits
- Design Considerations
- Placement Guidelines
- Freeze-Thaw Durability
- Project Review
What is Pervious Concrete?

- A No-Fines Concrete Mix
 - Coarse Aggregate
 - Portland Cement
 - Water
- Intended for use as an open-graded drainage material
Typical Pervious Concrete Mix Design

- 550 – 650 lbs. Portland Cement
 - Fly Ash / Slag Cement substitute acceptable at standard rates
- 27 ft3 Coarse Aggregate
 - Aggregate size will affect drainage rate
- 0.25 – 0.35 W/C Ratio
 - Sufficient water to display a wet, metallic sheen on the aggregate
Pervious Concrete Properties

• 15% to 35% air void content
• 100 to 120 lbs/ft³ unit weight
• 500 to 3000 psi strength*
 • Introduction of small amount of fine aggregate can increase strength to 4000 psi (+/-)
 • compressive strength typically not used as acceptance criteria. Air void structure and unit weight are used instead.
Pervious Concrete Properties

- Drainage rate = 3-5 gal/sec/ft2
- Equivalent of 275” to 450” of rain per hour!
 - More than half of all rainfall is provided in rain events that total one-half inch or less.
- 6” section with 20% voids holds 1 – 1 ¼” of rain water
Standard C-Factors

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Coefficient of Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete or Asphalt</td>
<td>1.00</td>
</tr>
<tr>
<td>Gravel - Compact</td>
<td>0.70</td>
</tr>
<tr>
<td>Clay - Bare</td>
<td>0.75</td>
</tr>
<tr>
<td>Clay - Light Vegetation</td>
<td>0.60</td>
</tr>
<tr>
<td>Clay - Dense Vegetation</td>
<td>0.50</td>
</tr>
<tr>
<td>Gravel - Bare</td>
<td>0.65</td>
</tr>
<tr>
<td>Gravel - Light Vegetation</td>
<td>0.50</td>
</tr>
<tr>
<td>Gravel - Dense Vegetation</td>
<td>0.40</td>
</tr>
<tr>
<td>Loam - Bare</td>
<td>0.60</td>
</tr>
<tr>
<td>Loam - Light Vegetation</td>
<td>0.45</td>
</tr>
<tr>
<td>Loam - Dense Vegetation</td>
<td>0.35</td>
</tr>
<tr>
<td>Sand - Bare</td>
<td>0.50</td>
</tr>
<tr>
<td>Sand - Light Vegetation</td>
<td>0.40</td>
</tr>
<tr>
<td>Sand - Dense Vegetation</td>
<td>0.30</td>
</tr>
<tr>
<td>Grass Areas</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Standard C-Factors

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Coefficient of Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete or Asphalt</td>
<td>1.00</td>
</tr>
<tr>
<td>Gravel - Compact</td>
<td>0.70</td>
</tr>
<tr>
<td>Clay - Bare</td>
<td>0.75</td>
</tr>
<tr>
<td>Clay - Light Vegetation</td>
<td>0.60</td>
</tr>
<tr>
<td>Clay - Dense Vegetation</td>
<td>0.50</td>
</tr>
<tr>
<td>Gravel - Bare</td>
<td>0.65</td>
</tr>
<tr>
<td>Gravel - Light Vegetation</td>
<td>0.50</td>
</tr>
<tr>
<td>Gravel - Dense Vegetation</td>
<td>0.40</td>
</tr>
<tr>
<td>Loam - Bare</td>
<td>0.60</td>
</tr>
<tr>
<td>Loam - Light Vegetation</td>
<td>0.45</td>
</tr>
<tr>
<td>Loam - Dense Vegetation</td>
<td>0.35</td>
</tr>
<tr>
<td>Sand - Bare</td>
<td>0.50</td>
</tr>
<tr>
<td>Sand - Light Vegetation</td>
<td>0.40</td>
</tr>
<tr>
<td>Sand - Dense Vegetation</td>
<td>0.30</td>
</tr>
<tr>
<td>Grass Areas</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Standard C-Factors

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Coefficient of Runoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete or Asphalt</td>
<td>1.00</td>
</tr>
<tr>
<td>Gravel - Compact</td>
<td>0.70</td>
</tr>
<tr>
<td>Clay - Bare</td>
<td>0.75</td>
</tr>
<tr>
<td>Clay - Light Vegetation</td>
<td>0.60</td>
</tr>
<tr>
<td>Clay - Dense Vegetation</td>
<td>0.50</td>
</tr>
<tr>
<td>Gravel - Bare</td>
<td>0.65</td>
</tr>
<tr>
<td>Gravel - Light Vegetation</td>
<td>0.50</td>
</tr>
<tr>
<td>Gravel - Dense Vegetation</td>
<td>0.40</td>
</tr>
<tr>
<td>Loam - Bare</td>
<td>0.60</td>
</tr>
<tr>
<td>Loam - Light Vegetation</td>
<td>0.45</td>
</tr>
<tr>
<td>Loam - Dense Vegetation</td>
<td>0.35</td>
</tr>
<tr>
<td>Sand - Bare</td>
<td>0.50</td>
</tr>
<tr>
<td>Sand - Light Vegetation</td>
<td>0.40</td>
</tr>
<tr>
<td>Sand - Dense Vegetation</td>
<td>0.30</td>
</tr>
<tr>
<td>Grass Areas</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Pervious Concrete should fall between these factors.
Typical Applications for Pervious Concrete

- Light Duty Parking Areas
- Nature Trails / Park Pathways
- Greenhouses / Nurseries
- Erosion Control
- Environmentally Sensitive Developments
Parking Lots & Pavements: Environmental Disasters

- Almost Total Runoff
- Public Water Needed for Vegetation
- Valuable Water Resources are Wasted
- Runoff Has Chemical Pollutants, Requiring Treatment
- Runoff is Hotter, Damaging Ecosystems
- Rapid, High Volume Runoff Requires Larger Public Drainage Facilities
- Hot Parking Lots Add to Urban Heat Island Effects
First Flush

- Pervious concrete pavement reduces runoff
 - Cleaner first flush
 - Captured by void structure
 - Minimization of PAH
- Soil chemistry and biology will naturally treat water
 - Oil drips and other automotive pollutants are “attacked” by naturally occurring soil microbes
An EPA BMP

• For stormwater pollution prevention

• Lower heat island effect

• Pervious concrete is eligible for LEED credit points for the USGBC Green Building Rating System.
Cost Advantages

• Savings to Municipalities
 • Reduces stormwater utility fees
 • Minimize upgrade of existing systems to keep up with development
 • Cerritos, CA
 • 90,000 ft² Pervious Concrete Parking Lot
 • City saved between $250K and $500K

• Savings to Owners/Developers
 • Eliminates need for retention ponds & other costly stormwater management practices
 • Provides for more efficient use of land development
Shelter Systems Ltd.
Westminster, MD

• Approximately 8 acres of pavement
• Saved $400,000 in underground drainage construction costs
• Eliminated 1 ½ acre retention pond
Pavement Design Thickness

- Hydrological Design Considerations of pavement & related base materials (stormwater storage capacity)
- Mechanical Properties (load carrying capacity)
- Choose greater thickness of these needs
- Base design important to storage as well
- Hydrological Design software is now available
Infiltration Systems

• Developed in 1970’s
 • Franklin Institute, Philadelphia, PA
 • Have been used for over 20 years
• Pervious concrete: 4-6 inches typical
• Open-graded stone subbase: determined by local hydrologic conditions
• Geotex prevents movement of fines into stone bed
• Perforated pipe to capture water & let it drain (optional)
• Water drains through pavement into stone bed and infiltrates slowly into underlying soil mantle
 • 0.1 – 0.5 in/hr acceptable
 • Total drawdown time should not exceed 5 days
Pervious Concrete Placement

Many ways to place pervious, including:

• Roller Screed
• Asphalt Paver
• Laser Screed
• Vibratory Truss Screed
Finishing: The Typical Process

- Spreading
- Strike-off
- Compacting
- Jointing/Edging
- Curing
Hydraulic Roller
Surface Texture

• Important to keep the voids open
• Do NOT use trowels
• Do NOT seal the surface
• No roller marks
Pervious Concrete Placement

• Can also use paving equipment
 • May still require side forms
 • Material usually not stiff enough for edges to hold under pressure of compaction
 • Conventional asphalt paver provides 90% (+/-) compaction
• For denser surface, follow behind with plate tamp or small roller
Durability of Pervious Concrete

- Directly related to proper placement
 - Maintain W/C ratio
 - Proper compaction of pervious surface
 - Proper curing is a must!
 - Specify an NRMCA Certified Pervious Concrete Contractor!
Can Pervious Concrete Withstand Freeze-Thaw?

• Proper mix design
• Proper placement
• Proper maintenance
Consider Conventional Concrete

- A/E required to relieve pressures in conventional concrete mix
 - Tight matrix holds moisture
 - Critically saturated > 91%
- A/E provides void structure for expansion of moisture during freeze
 - 4% to 8% air entrainment
 - 0.01 inch spacing factor
Pervious Concrete

- 15-35% void structure means little moisture trapped in matrix
 - Less likely to be saturated
- Expansion of moisture due to freezing does not exert undue pressures on matrix
- 0.25-0.35 W/C equals high quality paste
- Air entraining admixture protects the coating paste
Freeze-Thaw Resistance

- Depends on saturation level
- Avoid critical saturation
 - Maintenance
 - Annual cleaning in severe climates
 - Design
 - Infiltration System
 - Secret of success is to provide the water a place to go
Snow Packing

- Anecdotal evidence suggests snow-covered pervious clears quicker than impervious surfaces
 - Less need for snowplowing
- Water drains through pavement into stone bed
 - Water does not pond & re-freeze
 - Formation of “black ice” is rare
- Open-grade beds act as insulation
Grocery Store
Denver Colorado
Grocery Store
Denver Colorado
Grocery Store
Denver Colorado
Denver, CO

Pervious Concrete Conventional Asphalt

Sites directly across street
Photos: 5 min. differential max
Denver, CO

Pervious Concrete Conventional Asphalt

Sites directly across street
Photos: 5 min. differential max
Study conducted by NRMCA
Results available at www.nrmca.org
What About Clogging?

• Even if 100% clogged with dirt, pervious concrete will still be permeable
• For maintenance, clean pervious pavement with power scrubber
• And/or power wash
• Conventional pavement sweeper/vacuum equipment can also be used
Cleaning can restore 90+% of original permeability.
Let’s Look at Some Recent Projects
• Shelter Systems, Ltd.
 • Westminster, MD
• Placed 2004
• Wet Freeze
 • 90 cycles/yr
Meeting the Customer’s Needs

- Required heavy duty pavement
 - 30 to 40 trucks per day
- R/M adjusted mix
 - Added 500 lbs. fine agg. per CY
 - Flexural strength = 650 psi (7 days)
 - Placed with ABG dual-compaction paver
 - Rolled with small static roller
• Approximately 8 acres of pavement
• Mix design can accommodate 80” of rain per hour
• 10 times intensity of 100 year rainfall event!
• Saved $400,000 in underground drainage construction cost
• Allowed owner to close 1 ½ acre retention pond
- SR 23
- Sussex, NJ
- July, 1999
- Slope Erosion
“Yeah, but,,,“

“That will never work around here”
May, 2004 Placement
Williston, VT
May, 2004 Placement
Williston, VT
UNH Cold Climates Study
White Park – Concord, NH
Park and Ride – Randolph, VT
Downtown St. Albans, VT
• Over 1.2 MILLION YARDS of pervious concrete was placed in preparation for the 2008 Summer Games in China
For further information . . .

• Available from NNECPA
For further information . . .

• Available from NNECPA
For further information . . .

www.perviouspavement.org
Questions?
Thank You!

Jonathan Kuell
www.nnecpa.org
jkuell@nnecpa.org
www.concreteparking.org