

Concrete Solutions to Storm Water Runoff

NESMEA 2009

Presented By: Jonathan Kuell, Executive Director:

NORTHERN NEW ENGLAND CONCRETE PROMOTION ASSOCIATION

WW.NRMCA.ORG

Topics of Discussion

- Properties of Pervious Concrete
- Applications
- Benefits
- Design Considerations
- Placement Guidelines
- Freeze-Thaw Durability
- Project Review

What is Pervious Concrete?

- A No-Fines Concrete Mix
 - Coarse Aggregate
 - Portland Cement
 - Water

 Intended for use as an open-graded drainage material

WWW.NRMCA.ORG

Typical Pervious Concrete Mix Design

- 550 650 lbs. Portland Cement
 - Fly Ash / Slag Cement substitute acceptable at standard rates
- 27 ft³ Coarse Aggregate
 - Aggregate size will affect drainage rate
- 0.25 0.35 W/C Ratio
 - Sufficient water to display a wet, metallic sheen on the aggregate

Pervious Concrete Properties

- 15% to 35% air void content
- 100 to 120 lbs/ft³ unit weight
- 500 to 3000 psi strength*
 - Introduction of small amount of fine aggregate can increase strength to 4000 psi (+/-)
 - compressive strength typically <u>not</u> used as acceptance criteria. Air void structure and unit weight are used instead.

Pervious Concrete Properties

- Drainage rate = 3-5 gal/sec/ft²
- Equivalent of 275" to 450" of rain per hour!
 - More than half of all rainfall is provided in rain events that total one-half inch or less.
- 6" section with 20% voids holds 1 – 1 ¼" of rain water

Standard C-Factors

Soil Texture	Coefficient of Runoff
Concrete or Asphalt	1.00
Gravel - Compact	0.70
Clay - Bare	0.75
Clay - Light Vegetation	0.60
Clay - Dense Vegetation	0.50
Gravel - Bare	0.65
Gravel - Light Vegetation	0.50
Gravel - Dense Vegetation	0.40
Loam - Bare	0.60
Loam - Light Vegetation	0.45
Loam - Dense Vegetation	0.35
Sand - Bare	0.50
Sand - Light Vegetation	0.40
Sand - Dense Vegetation	0.30
Grass Areas	0.35

WWW.NRMCA.ORG

Standard C-Factors

Soil Texture	Coefficient of Runoff
Concrete or Asphalt	1.00
Gravel - Compact	0.70
Clay - Bare	0.75
Clay - Light Vegetation	0.60
Clay - Dense Vegetation	0.50
Gravel - Bare	0.65
Gravel - Light Vegetation	0.50
Gravel - Dense Vegetation	0.40
Loam - Bare	0.60
Loam - Light Vegetation	0.45
Loam - Dense Vegetation	0.35
Sand - Bare	0.50
Sand - Light Vegetation	0.40
Sand - Dense Vegetation	0.30
Grass Areas	0.35

WWW.NRMCA.ORG

Standard C-Factors

Soil Texture	Coefficient of Runoff
Concrete or Asphalt	1.00
Gravel - Compact	0.70
Clay - Bare	0.75
Clay - Light Vegetation	0.60
Clay - Dense Vegetation	0.50
Gravel - Bare	0.65
Gravel - Light Vegetation	0.50
Gravel - Dense Vegetation	0.40
Loam - Bare	0.60
Loam - Light Vegetation	0.45
Loam - Dense Vegetation	0.35
Sand - Bare	0.50
Sand - Light Vegetation	0.40
Sand - Dense Vegetation	0.30
Grass Areas	0.35

WWW.NRMCA.ORG

Pervious Concrete should fall between these factors

Typical Applications for Pervious Concrete

Light Duty Parking Areas Nature Trails / Park Pathways

Greenhouses / Nurseries Erosion Control Environmentally Sensitive Developments

Parking Lots & Pavements: Environmental Disasters

- Almost Total Runoff
- Public Water Needed for Vegetation
- Valuable Water Resources are Wasted
- Runoff Has Chemical Pollutants, Requiring Treatment
- Runoff is Hotter, Damaging Ecosystems
- Rapid, High Volume Runoff Requires Larger Public Drainage Facilities
- Hot Parking Lots Add to Urban Heat Island Effects

First Flush

Pervious concrete pavement reduces runoff

- Cleaner first flush
- Captured by void structure
- Minimization of PAH
- Soil chemistry and biology will naturally treat water
 - Oil drips and other automotive pollutants are "attacked" by naturally occurring soil microbes

An EPA BMP

For stormwater pollution prevention

Lower heat island effect

 Pervious concrete is eligible for LEED credit points for the USGBC Green Building Rating System.

Cost Advantages

Savings to Municipalities

- Reduces stormwater utility fees
- Minimize upgrade of existing systems to keep up with development
 - Cerritos, CA
 - 90,000 ft² Pervious Concrete Parking Lot
 - City saved between \$250K and \$500K
- Savings to Owners/Developers
 - Eliminates need for retention ponds & other costly stormwater management practices
 - Provides for more efficient use of land development

Shelter Systems Ltd. Westminster, MD

- Approximately 8 acres of pavement
- Saved \$400,000 in underground drainage construction costs
- Eliminated 1 ¹/₂ acre retention pond

Pavement Design Thickness

- Hydrological Design Considerations of pavement & related base materials (stormwater storage capacity)
- Mechanical Properties (load carrying capacity)
- Choose greater thickness of these needs
- Base design important to storage as well
- Hydrological Design software is now available

Infiltration Systems

Developed in 1970's
Franklin Institute, Philadelphia, PA
Have been used for over 20 years

- Pervious concrete: 4-6 inches typical
- Open-graded stone subbase: determined by local hydrologic conditions
- Geotex prevents movement of fines into stone bed
- Perforated pipe to capture water & let it drain (optional)

- Water drains through pavement into stone bed and infiltrates slowly into underlying soil mantle
 - 0.1 0.5 in/hr acceptable
 - Total drawdown time should not exceed 5 days

Pervious Concrete Placement

Many ways to place pervious, including:

- Roller Screed
- Asphalt Paver
- Laser Screed
- Vibratory Truss Screed

Finishing: The Typical Process

- Spreading
- Strike-off
- Compacting
- Jointing/Edging
- Curing

Hydraulic Roller

WWW.NRMCA.ORG

Surface Texture

- Important to keep the voids open
- Do NOT use trowels
- Do NOT seal the surface
- No roller marks

TION

Pervious Concrete Placement Can also use paving equipment May still require side forms Material usually not stiff enough for edges to hold under pressure of compaction Conventional asphalt paver provides 90% (+/-) compaction For denser surface, follow behind with plate tamp or small roller

Durability of Pervious Concrete

Directly related to proper placement

- Maintain W/C ratio
- Proper compaction of pervious surface
- Proper curing is a must!
- Specify an NRMCA Certified Pervious Concrete Contractor!

Can Pervious Concrete Withstand Freeze-Thaw?

Proper mix design
Proper placement
Proper maintenance

Consider Conventional Concrete A/E required to relieve pressures in conventional concrete mix Tight matrix holds moisture Critically saturated > 91% A/E provides void structure for expansion of moisture during freeze • 4% to 8% air entrainment 0.01 inch spacing factor

Pervious Concrete

- 15-35% void structure means little moisture trapped in matrix
 - Less likely to be saturated
- Expansion of moisture due to freezing does not exert undue pressures on matrix
- 0.25-0.35 W/C equals high quality paste
- Air entraining admixture protects the coating paste

Freeze-Thaw Resistance

- Depends on saturation level
- Avoid critical saturation
 - Maintenance
 - Annual cleaning in severe climates
 - Design
 - Infiltration System
 - Secret of success is to provide the water a place to go

Snow Packing

- Anecdotal evidence suggests snow-covered pervious clears quicker than impervious surfaces
 - Less need for snowplowing
- Water drains through pavement into stone bed
 - Water does not pond & re-freeze
 - Formation of "black ice" is rare
 - Open-grade beds act as insulation

Grocery Store Denver Colorado

Grocery Store Denver Colorado

Grocery Store Denver Colorado

WWW.NRMCA.ORG

Denver, CO Pervious Concrete Conventional Asphalt

Sites directly across street Photos: 5 min. differential max

WWW.NRMCA.ORG

Denver, CO Pervious Concrete Conventional Asphalt

Sites directly across street Photos: 5 min. differential max

WWW.NRMCA.ORG

Study conducted by NRMCA Results available at www.nrmca.org

Freeze-Thaw Resistance of Pervious Concrete

NRMCA • 900 Spring Street, Silver Spring, MD 20910 • www.nrmca.org • (888) 84NRMCA

May 2004

What About Clogging?

- Even if 100% clogged with dirt, pervious concrete will still be permeable
- For maintenance, clean pervious pavement with power scrubber
- And/or power wash

 Conventional pavement sweeper/vacuum equipment can also be used

Cleaning can restore 90+% of original permeability

5

NATIONAL READY MIXED CONCRETE ASSOCIATION

Let's Look at Some Recent Projects

- Shelter Systems, Ltd.
 Westminster, MD
 Placed 2004
 Wet Freeze
 - 90 cycles/yr

Meeting the Customer's Needs Required heavy duty pavement • 30 to 40 trucks per day R/M adjusted mix Added 500 lbs. fine agg. per CY • Flexural strength = 650 psi (7 days) Placed with ABG dual-compaction paver Rolled with small static roller

Approximately 8 acres of pavement
Mix design can accommodate 80" of rain per hour
10 times intensity of 100 year rainfall event!

 Saved \$400,000

 in underground drainage
 construction cost

 Allowed owner to close 1 ½

 acre retention
 pond

SR 23
Sussex, NJ
July, 1999
Slope Erosion

WWW.NRMCA.ORG

"Yeah, but,,,"

"That will never work around here"

May, 2004 Placement Williston, VT

May, 2004 Placement Williston, VT

May, 2004 Placement Williston, VT

UNH Cold Climates Study

UNH Cold Climates Study

White Park – Concord, NH

Park and Ride – Randolph, VT

Downtown St. Albans, VT

Over 1.2 MILLION YARDS of pervious concrete was placed in preparation for the 2008 Summer Games in China

For further information . . .Available from NNECPA

Pervious

Concrete

Pavements

Paul D. Tennis Michael L. Leming David J. Akers

N

For further information . . .Available from NNECPA

Pervious Concrete: Hydrological Design and Resources

For further information . . .

Pervious Concrete When it rains...it drains.

www.perviouspavement.org

Questions?

NORTHERN NEW ENGLAND CONCRETE PROMOTION ASSOCIATION

Thank You!

Jonathan Kuell www.nnecpa.org jkuell@nnecpa.org www.concreteparking.org